DOI QR코드

DOI QR Code

Performance of paraffin mixed concrete subjected to combined freeze-thaw and chloride environment

  • Hiroshi Maruta (Department of Civil Engineering, Fukuoka University) ;
  • Dhruva Narayana Katpady (Department of Civil Engineering, Fukuoka University) ;
  • Hirotaka Hazehara (Department of Civil Engineering, Fukuoka University) ;
  • Masashi Soeda (Department of Civil Engineering, Fukuoka University)
  • Received : 2023.08.25
  • Accepted : 2024.06.24
  • Published : 2024.01.25

Abstract

In this study, the fresh properties of paraffin-mixed concrete, compressive strength, resistance to frost damage, and resistance to composite deterioration under freeze-thaw and salt environment were investigated. The compressive strength of paraffin-mixed concrete was almost the same as that of unmixed concrete, and no decrease in strength was observed, unlike the concrete with entrained air in consideration of freeze-thaw resistance. Concerning the freeze-thaw resistance of paraffin-mixed concrete, the relative dynamic modulus of elasticity (RDME) did not decrease even without entrained air. In addition, no decrease in the RDME was observed in the combined deterioration with salt damage, and it was confirmed that the mass reduction was suppressed compared to the concrete without paraffin. The freeze-thaw resistance of concrete when paraffin is mixed may be improved due to the reduction in the amount of frozen water and the mixed paraffin particles exist in the concrete as pore fillers with a size of 200 ㎛ or less, which act as substitutes for air voids. This resulted in reduction of the apparent air void spacing and thereby relieving the pore pressure.

Keywords

References

  1. ACI 211 (2009), American Concrete Institute, Standard practice for selecting proportions for normal, heavyweight, and mass concrete: State of Michigan, USA.
  2. ASTM C 457 (2006), America Society for Testing and Materials, Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete: ANSI.
  3. ASTM C 94 (2020), ASTM International, Standard specification for ready-mixes concrete, American National Standards Institute: Commonwealth of Pennsylvania, USA.
  4. Bentz, D.P. and Turpin, R. (2007), "Potential applications of phase change materials in concrete technology", Cem. Concr. Res., 29, 527-532. https://doi.org/10.1016/j.cemconcomp.2007.04.007
  5. EN 206 (2013), European Standard, Concrete. Specification, performance, production and conformity, European Committee for Standardization: European Union.
  6. Farnam, Y., Wiese, A., Bentz, D., Davis, J. and Weiss, J. (2015), "Damage development in cementitious materials exposed to magnesium chloride deicing salt", Constr. Build. Mater., 93, 384-392. https://doi.org/10.1016/j.conbuildmat.2015.06.004
  7. Farnam, Y., Krafcik, M., Liston, L., Washington, R., Erk, K., Tao, B. and Weiss, J. (2016), "Evaluating the Use of Phase Change Materials in Concrete Pavement to Melt Ice and Snow", J. Mater. Civ. Eng., 28(4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001439
  8. Farnam, Y., Esmaeeli, H.S., Zavattieri, P.D., Haddock, J. and Weiss, J. (2017), "Incorporating phase change materials in concrete pavement to melt snow and ice", Cem. Concr. Res., 84, 134-145. https://doi.org/10.1016/j.cemconcomp.2017.09.002
  9. Hanjari, K.Z., Utgenannt, P. and Lundgren, K. (2011), "Experimental study of the material and bond properties of frost-damaged concrete", Cem. Concr. Res., 41, 244-254. https://doi.org/10.1016/j.cemconres.2010.11.007
  10. Hasegawa, S., Mitsuishi, N., Akahori, Y. and Nawa, T. (2006), "A Proposal of a Method for Measuring the Frozen Water Volume of Water in Cured Cement", Proc. Jpn. Concr. Inst., 28(1), 851-856. [In Japanese] https://data.jci-net.or.jp/data_pdf/28/028-01-1139.pdf
  11. Honda, D., Quy, N.X., Kim, J. and Hama, Y. (2021), "Influence of drying on frost resistance of mortar using a nitrite corrosion inhibitor and paraffin waterproofing agent", Constr. Build. Mater., 283, 1-16. https://doi.org/10.1016/j.conbuildmat.2021.122581
  12. JASS 5 (2018), Japanese Architectural Standard Specification, Japanese Architectural Standard Specification Reinforced Concrete Work: Japan.
  13. JGJ 55 (2011), Chinese National Standard, Specification for mix proportion design of ordinary concrete: China.
  14. JIS A 1101 (2020), Japanese Industrial Standards, Method to test for slump to concrete, Japanese Standards Association: Tokyo, Japan.
  15. JIS A 1108 (2018), Japanese Industrial Standards, Method to test for compressive strength of concrete, Japanese Standards Association: Tokyo, Japan
  16. JIS A 1123 (2022), Japanese Industrial Standards, Method to test for bleeding of concrete, Japanese Standards Association: Tokyo, Japan.
  17. JIS A 1128 (2020), Japanese Industrial Standards, Method to test for air content of fresh concrete by pressure method, Japanese Standards Association: Tokyo, Japan.
  18. JIS A 1148 (2010), Japanese Industrial Standards, Method to test for resistance of concrete to freezing and thawing, Japanese Standards Association: Tokyo, Japan.
  19. JIS A 5308 (2019), Japanese Industrial Standards, Ready-mixed concrete, Japanese Standards Association: Tokyo, Japan.
  20. JIS R 5201 (2015), Japanese Industrial Standards, Physical test methods for cement, Japanese Standards Association: Tokyo, Japan.
  21. KS F 4009 (2016), Korean Industrial Standards, Ready-mixed concrete, Korean Standards Association: Seoul, Korea.
  22. Kishimoto, G., Kim, J., Choi, H. and Hama, Y. (2018), "Influence of silicone oil on durability of portland blast furnace slag cement mortar", J. Adv. Concr. Technol., 16, 110-123. https://doi.org/10.3151/jact.16.110
  23. Li, W., Ling, C., Jiang, Z. and Yu, Q. (2019), "Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete", Constr. Build. Mater., 203, 621-632. https://doi.org/10.1016/j.conbuildmat.2019.01.098
  24. MLIT (2017), Ministry of Land, Infrastructure, Transport and Tourism, Reference materials on measures against freezing and thawing resistance in the Tohoku region (draft). [In Japanese]
  25. Muzenski, S., Flores-Vivian, I. and Sobolev, K. (2015), "Durability of superhydrophobic engineered cementitious composites", Constr. Build. Mater., 81, 291-297. https://doi.org/10.1016/j.conbuildmat.2015.02.014
  26. Nayak, S., Lyngdoh, G.A. and Das, S. (2019), "Influence of microencapsulated phase change materials (PCMs) on the chloride ion diffusivity of concretes exposed to Freeze-thaw cycles: Insights from multiscale numerical", Constr. Build. Mater., 212, 317-328. https://doi.org/10.1016/j.conbuildmat.2019.04.003
  27. Nishi, H. and Nawa, T. (2014a), "Property of the hydrophobic compound based drying shrinkage reducing agent which improved deterioration resistance by frost action", Trans. AIJ. J. Struct. Constr. Eng., 79(696), 191-200. [In Japanese] https://doi.org/10.3130/aijs.79.191
  28. Nishi, H. and Nawa, T. (2014b), "Study on frost damage degradation in hydrated cement using hydrophobic compound", Trans. AIJ. J. Struct. Constr. Eng., 79(696), 1415-1424. [In Japanese] https://doi.org/10.3130/aijs.79.1415
  29. Oyamada, T., Misosaku, T., Tkahasi, K. and Shiina, T. (2022), "Effects of Various Construction Processes on the Tunnel Lining Concrete Air and Its Frost Resistance", Proc. Jpn. Concr. Inst., 44(1), 526-531. [In Japanese]
  30. Pilehvar, S., Szczotok, A.M., Rodriguez, J.F., Valentini, L., Lanzon M., Pamies, R. and Kjoniksen, A.L. (2019), "Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials", Constr. Build. Mater., 200, 94-103. https://doi.org/10.1016/j.conbuildmat.2018.12.057
  31. Powers, T.C. (1945), "A Working Hypothesis for Further Studies of Frost Resistance of Concrete", J. Am. Concr. Inst., 16(4), 245-272. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/8684
  32. Qiao, C., Suraneni, P. and Weiss, J. (2018), "Damage in cement pastes exposed to NaCl solutions", Constr. Build. Mater., 171, 120-127. https://doi.org/10.1016/j.conbuildmat.2018.03.123
  33. Saichi, M., Shinohe, H. and Mihashi, H. (2002), "Quantification of internal cracks developed within frost-damaged concrete", Concr. Res. Technol., 13(1), 13-24. [In Japanese] https://doi.org/10.3151/crt1990.13.1_13
  34. Sakata, N., Sugamata, T., Hayashi, D. and Hashimoto, M. (2012), "Investigation for relationship between frost damage resistance and air-void system in concrete", Concr. Res. Technol., 23(1), 35-47. [In Japanese] https://doi.org/10.3151/crt.23.35
  35. Sun, W., Zhang, Y.M., Yan, H.D. and Mu, R. (1999), "Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles", Cem. Concr. Res., 29, 1519-1523. https://doi.org/10.1016/S0008-8846(99)00097-6
  36. Sun, W., Mu, R., Luo, X. and Miao, C. (2002), "Effect of chloride salt, freeze-thaw cycling and externally applied on the performance of the concrete", Cem. Concr. Res., 32, 1859-1864. https://doi.org/10.1016/S0008-8846(02)00769-X
  37. Tian, Y., Lai, Y., Pei, W., Qin, Z. and Li, H. (2022), "Study on the physical mechanical properties and freeze-thaw resistance of artificial phase change aggregates", Constr. Build. Mater., 329, 127-225. https://doi.org/10.1016/j.conbuildmat.2022.127225
  38. Wang, Y., Li, J., Ueda, T., Zhang, D. and Deng, J. (2021), "Mesoscale mechanical deterioration of mortar subjected to freeze thaw cycles and sodium chloride attack", Cem. Concr. Compos., 117. https://doi.org/10.1016/j.cemconcomp.2020.103906
  39. Wang, Y., Liu, Z., Zhang, B. and Fu, K. (2022), "A time-dependent diffusive model for the simulation of chloride penetration in concrete considering the effect of natural salt freeze-thaw cycles", Cold Regions Sci. Technol., 201. https://doi.org/10.1016/j.coldregions.2022.103622
  40. Wong, H.S., Pappas, A.M., Zimmerman, R.W. and Buenfeld, N.R. (2011), "Effect of entrained air voids on the microstructure and mass transport properties of concrete", Cem. Concr. Res., 41, 1067-1077. https://doi.org/10.1016/j.cemconres.2011.06.013
  41. Yeon, J.H. and Kim, K.K. (2018), "Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement", Constr. Build. Mater., 117, 202-209. https://doi.org/10.1016/j.conbuildmat.2018.05.113
  42. Zhou, J., Wang, G., Liu, P., Guo, X. and Xu, J. (2022), "Concrete Durability after Load Damage and Salt Freeze-Thaw Cycles", Mater., 15(13), 4380. https://doi.org/10.3390/ma15134380