DOI QR코드

DOI QR Code

Computation of boundary layer flow of porous medium based on finite difference method

  • Mohamed Amine Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Mudassar Jalil (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Elimam Ali (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University)
  • Received : 2023.08.04
  • Accepted : 2024.06.23
  • Published : 2024.01.25

Abstract

In this paper, boundary layer flow is observed through stretching cylinder exponentially with non-linear velocity. This cylinder is rested in porous medium. Appropriate similarity transformation is employed for the conversion of governing PDEs into ODEs. To compute the problem and solution series numerical method is applied and evaluated by using finite difference Keller-Box method. The velocity ratio, permeability parameter, Reynold number is figure out to examine the effect of on velocity profile. Fluid velocity and skin friction coefficient goes down with increment of Reynold number and permeability parameter. While reverse behavior is reported for velocity ratio. The results are validated with earlier investigations and found very well.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/ 2022/01/21994).

References

  1. Abdrashitova, R.N., Bozhenkova, G.S., Ponomarev, A.A., Gilya-Zetinov, A.G., Markov, A.A. and Zavatsky, M.D. (2023), "Synthesis of Zno doped multi walled carbon nanotubes (Mwnts) for dyes degradation and water purification", Water Conserv. Manag., 7(1), 01-05. https://doi.org/10.26480/wcm.01.2023.01.05
  2. Ahmed, S.E. and Rashed, Z.Z. (2021), "Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels", Thermal Sci., 25(6 Part A), 4241-4255. https://doi.org/10.2298/TSCI191014144A
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  5. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X
  6. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  8. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-243. https://doi.org/10.12989/anr.2018.6.3.219
  9. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1
  10. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392
  11. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282 https://doi.org/10.12989/anr.2020.8.4.277.
  12. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  13. Alwabli, A.S., Kaci, A., Bellifa, H., Bousahla, A.A., Tounsi, A., Alzahrani, D.A., Abulfaraj, A.A., Bourada, F., Benrahou, K.H., Tounsi, A. and Mahmoud, S.R. (2021), "The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory", Adv. Nano Res., Int. J., 10(1), 15-24. https://doi.org/10.12989/anr.2021.10.1.015
  14. Andersson, H.I. (1992), "MHD flow of a viscoelastic fluid past a stretching surfac", Acta Mech., 95, 227-230. https://doi.org/10.1007/BF01170814
  15. Andersson, H.I. (1995), "An exact solution of the Navier-Stokes equations for magnetohydrodynamic flow", Acta Mech, 113, 241-244. https://doi.org/10.1007/BF01212646
  16. Andersson, H.I. (2002), "Slip flow past a stretching surface", Acta Mech., 158, 121-125. https://doi.org/10.1007/BF01463174
  17. Asghar, S., Naeem, M.N., Khadimallah, M.A., Hussain, M., Iqbal, Z. and Tounsi, A. (2020a), "Effect of chiral structure for free vibration of DWCNTs: Modal analysis", Adv. Concrete Constr., Int. J., 9(6), 577-588. https://doi.org/10.12989/acc.2020.9.6.577
  18. Asghar, S., Khadimallah, M.A., Naeem, M.N., Ghamkhar, M., Khedher, K.M., Hussain, M., Bouzgarrou, S.M., Ali, Z., Iqbal, Z., Mahmoud, S.R. and Algarni, A. (2020b), "Small scale computational vibration of double-walled CNTs: Estimation of nonlocal shell model", Adv. Concrete Constr., 10(4), 345-355. https://doi.org/10.12989/acc.2020.10.4.345
  19. Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-hydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection Peclet number effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11
  20. Bai, B., Chen, J., Zhang, B. and Wang, H. (2024), "Migration trajectories and blocking effect of the fine particles in porous media based on particle flow simulation", AIP Advances, 14(4), 045036. https://doi.org/10.1063/5.0199046
  21. Beg, O.A., Mabood, F. and Nazrul Islam, M. (2015), "Homotopy simulation of nonlinear unsteady rotating nanofluid flow from a spinning body", Int. J. Eng. Mathe., 13(4), 1-15. http://dx.doi.org/10.1155/2015/272079
  22. Buongiorno, J. (2006), "Convective Transport in Nanofluids", J. Heat Transfer, 128, 240-250. http://dx.doi.org/10.1115/1.2150834
  23. Casson, N. (1959), "A flow equation for pigment-oil suspensions of the printing ink type", Rheol. Disperse Syst., pp. 84-104.
  24. Chaim, T.C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://journals.jps.jp/doi/10.1143/JPSJ.63.2443
  25. Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085
  26. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
  27. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
  28. Crane, L.J. (1970), "Flow past a stretching plate", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 21(4), 645-647. https://doi.org/10.1007/bf01587695
  29. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  30. Devi, C.S., Takhar, H.S. and Nath, G. (1986), "Unsteady, three-dimensional, boundary-layer flow due to a stretching surface", Int. J. Heat Mass Transfer, 29(12), 1996-1999. https://doi.org/10.1016/0017-9310(86)90020-7
  31. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concrete Constr., Int. J., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481
  32. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269
  33. Gbadeyan, J.A., Titiloye, E.O. and Adeosun, A.T. (2020), "Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip", Heliyon, 6(1), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076
  34. Han, Q. and Chu, F. (2015), "Nonlinear dynamic model for skidding behavior of angular contact ball bearings", J. Sound Vib., 354, 219-235. https://doi.org/10.1016/j.jsv.2015.06.008
  35. Han, Q., Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions", Int. J. Mech. Sci., 135, 203-214. https://doi.org/10.1016/j.ijmecsci.2017.11.013
  36. Iqbal, W., Jalil, M., Khadimallah, M.A., Ayed, H., Naeem, M.N., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ghandourah, E., Taj, M. and Tounsi, A. (2020), "Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder", Steel Compos. Struct., Int. J., 36(5), 603-615. https://doi.org/10.12989/scs.2020.36.5.603
  37. Iqbal, W., Jalil, M., Khadimallah, M.A., Hussain, M., Naeem, M.N., Al Naim, A.F. and Tounsi, A. (2021), "Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method", Adv. Nano Res., Int. J., 10(4), 349-357. https://doi.org/10.12989/anr.2021.10.4.349
  38. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", Appl. Mathe. Model., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
  39. Jiang, Z., Shi, H., Tang, X. and Qin, J. (2023), "Recent advances in droplet microfluidics for single-cell analysis", TrAC Trends in Analytical Chemistry, 159, 116932. https://doi.org/10.1016/j.trac.2023.116932
  40. Khadimallah, M.A., Safeer, M., Taj, M., Ayed, H., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ahmad, M. and Tounsi, A. (2020a), "The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model", Adv. Concrete Constr., Int. J., 10(2), 141-149. https://doi.org/10.12989/acc.2020.10.2.141
  41. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020b), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., Int. J., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137
  42. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202. http://dx.doi.org/10.1063/1.4937346
  43. Li, Z., Sheikholeslami, M., Mittal, A.S., Shafee, A. and Haq, R.U. (2019), "Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method", Eur. Phys. J. Plus, 134, 30. https://doi.org/10.1140/epjp/i2019-12406-8
  44. Luo, J., Wang, G., Li, G. and Pesce, G. (2022), "Transport infrastructure connectivity and conflict resolution: a machine learning analysis", Neural Comput. Applicat., 34(9), 6585-6601. https://doi.org/10.1007/s00521-021-06015-5
  45. Magyari, E. and Keller, B. (2000), "Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls", Eur. J. Mech.-B/Fluids, 19(1), 109-122. https://doi.org/10.1016/S0997-7546(00)00104-7
  46. Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x
  47. Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/J.IJTHERMALSCI.2011.02.019
  48. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s13204-013-0267-0
  49. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  50. Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.5897/IJPS2014.4177
  51. Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4), p. 041701. https://doi.org/10.1115/1.4023038
  52. Mutuku, W.N. and Makinde, O.D. (2014), "Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fluids, 95, 88-97. https://doi.org/10.1016/j.compfluid.2014.02.026
  53. Nadeem, S., Hussain, S.T. and Lee, C. (2013), "Flow of a Williamson fluid over a stretching sheet", Brazil. J. Chem. Eng., 30(3), 619-625. http://dx.doi.org/10.1590/S0104-66322013000300019
  54. Nayak, M.K., Prakash, J., Tripathi, D., Pandey, V.S., Shaw, S. and Makinde, O.D. (2020), "3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms", Heat Transfer-Asian Res., 49(1), 135-153. https://doi.org/10.1002/htj.21603
  55. Ponomarev, A.A., Nurullina, T.S. and Zavatsky, M.D. (2022), "Remediation Of Cr (Vi) in Water Using Biosynthesized Palladium Nano-Materials Loaded (Shewanella Oneidensis) Mr-1", Water Conserv. Manag., 6(2), 146-153. https://doi.org/10.26480/wcm.02.2022.146.153
  56. Rajagopal, K.R. (1995), "On boundary conditions for fluids of the differential type", Navier-Stokes Equations and Related Nonlinear Problems, 273-278. https://doi.org/10.1007/978-1-4899-1415-6_22
  57. Rajeswari, V. and Nath, G. (1992), "Unsteady flow over a stretching surface in a rotating fluid", Int. J. Eng. Sci., 30(6), 747-756. https://doi.org/10.1016/0020-7225(92)90104-O
  58. Rehman, A. (2015), "Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretched cylinder", Appl. Compos. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15
  59. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555
  60. Sailaja, S.V., Shanker, B. and Raju, R.S. (2018), "Finite element analysis of magneto-hydrodynamic casson fluid flow past a vertical plate with the impact of angle of inclination", J. Nanofluids, 7(2), 383-395. https://doi.org/10.1166/JON.2018.1456
  61. Sakiadis, B.C. (1961), "Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow", AIChE J., 7(1), 26-28. https://doi.org/10.1002/aic.690070108
  62. Salahuddin, T., Malik, M.Y., Hussain, A., Bilal, S. and Awais, M. (2016), "MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach", J. Magnet. Magnet. Mater., 401, 991-997. https://doi.org/10.1016/j.jmmm.2015.11.022
  63. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  64. Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mechanica, 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2
  65. Shah, Z., Kumam, P. and Deebani, W. (2020), "Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation", Scientific Reports, 10(1), 1-14. https://www.nature.com/articles/s41598-020-61125-9
  66. Sharif, H., Naeem, M.N., Khadimallah, M.A., Ayed, H., Bouzgarrou, S.M., Al Naim, A.F., Hussain, S., Hussain, M., Iqbal, Z. and Tounsi, A. (2020), "Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism", Adv. Concrete Constr., Int. J., 10(4), 357-367. https://doi.org/10.12989/acc.2020.10.4.357
  67. Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718
  68. Shu, X., Li, J. and Shen, M. (2022), "A coupled 2D RBSM-Voronoi model for simulating fracture behaviors of plain concrete components", Adv. Concrete Constr., Int. J., 14(6), 391-400. https://doi.org/10.12989/acc.2022.14.6.391
  69. Siddappa, B. and Abel, S. (1985), "Non-Newtonian flow past a stretching plate", J. Appl. Math. Phys. (ZAMP), 36, 89-98. http://dx.doi.org/10.1007/BF00944900
  70. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R. S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
  71. Souayeh, B., Reddy, M.G., Sreenivasulu, P., Poornima, T.M.I.M., Rahimi-Gorji, M. and Alarifi, I.M. (2019), "Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle", J. Molecul. Liquids, 284, 163-174. https://doi.org/10.1016/j.molliq.2019.03.151
  72. Sugiyama, T., Dabwan, A.H.A., Furukawa, M., Tateishi, I., Katsumata, H. and Kaneco, S. (2021), "Development of Carbon Nanotube as Highly Active Photocatatlytic Adsorbent for Treatment of Acid Red 88 Dye", Water Conserv. Manag., 5(1), 26-29.
  73. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fluids, 35(3), 32002. https://doi.org/10.1063/5.0138294
  74. Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. https://doi.org/10.1177/1045389X231222999
  75. Taj, M., Khadimallah, M.A., Hussain, M., Khedher, K.M., Shamim, R.A., Ahmad, M. and Tounsi, A. (2020), "Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium", Smart Struct. Syst., Int. J., 26(6), 809-817. https://doi.org/10.12989/sss.2020.26.6.809
  76. Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Al Naim, A.F. and Ahmad, M. (2021), "Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments", Adv. Concrete Constr., Int. J., 11(1), 81-88. https://doi.org/10.12989/acc.2021.11.1.081
  77. Takhar, H.S., Agarwal, R.S., Bhargava, R. and Jain, S. (1998), "Mixed convective non-steady 3-dimensional micropolar fluid flow at a stagnation point", Heat Mass Transfer, 33(5), 443-448. https://doi.org/10.1007/s002310050213/metrics
  78. Tiwari, R.K. and Das, M.K. (2007), "Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids", Int. J. Heat Mass Transfer, 50(9-10), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
  79. Vajravelu, K. and Hadjinicolaou, A. (1993), "Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation", Int. Commun. Heat Mass Transfer, 20(3), 417-430. https://doi.org/10.1016/0735-1933(93)90026-R
  80. Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to stretching cylinder", Int. J. Non-Linear Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.014
  81. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023a), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701
  82. Wang, Z., Wang, S., Wang, X. and Luo, X. (2023b), "Permanent Magnet-Based Superficial Flow Velometer With Ultralow Output Drift", IEEE Transact. Instrum. Measur., 72, 1-12. https://doi.org/10.1109/TIM.2023.3304692
  83. Wang, Q., Li, P., Rocca, P., Li, R., Tan, G., Hu, N. and Xu, W. (2023c), "Interval-based tolerance analysis method for petal reflector antenna with random surface and deployment errors", IEEE Transact. Anten. Propag., 71(11), 8556-8569. https://doi.org/10.1109/TAP.2023.3314097
  84. Wang, Z., Zhao, Q., Yang, Z., Liang, R. and Li, Z. (2024), "High-speed photography and particle image velocimetry of cavitation in a Venturi tube", Phys. Fluids, 36(4), 045147. https://doi.org/10.1063/5.0203411
  85. Wu, H., Bai, B. and Liu, J. (2024), "Temperature-driven coupled transport of pollutants and suspended particles established by granular thermodynamics", Int. J. Heat Mass Transfer, 228, 125645. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125645
  86. Zhang, Y., Cheng, M., Liu, X., Rong, G., Sheng, Z., Shen, D., Wu, K. and Wang, J. (2024), "The influence of plug nozzle and Laval nozzle on the flow field and performance of non-premixed rotating detonation combustor", Phys. Fluids, 36(5), 056107. https://doi.org/10.1063/5.0207508