References
- Agrawal, R., Imieli'nski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data (pp. 207-216).
- Agrawal, R., and Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th International Conference Very Large Data Bases (VLDB) (pp. 487-499).
- Bailey, R. A., and Simon, L. J. (1960). Two studies in automobile insurance ratemaking. ASTIN Bulletin: The Journal of the IAA, 1(4), 192-217. https://doi.org/10.1017/S0515036100009569
- Bhowmik, R. (2011). Detecting auto insurance fraud by data mining techniques. Journal of Emerging Trends in Computing and Information Sciences, 2, 156-162.
- Czado, C., Kastenmeier, R., Brechmann, E. C., and Min, A. (2012). A mixed copula model for insurance claims and claim sizes. Scandinavian Actuarial Journal, 2012(4), 278-305. https://doi.org/10.1080/03461238.2010.546147
- Frees, E. W., and Valdez, E. A. (2008). Hierarchical insurance claims modeling. Journal of the American Statistical Association, 103(484), 1457-1469. https://doi.org/10.1198/016214508000000823
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
- Fauzan, M. A., and Murfi, H. (2018). The accuracy of XGBoost for insurance claim prediction. International Journal of Advances in Soft Computing and its Applications, 10(2), 159-171.
- Fialova, V., and Folvarcna, A. (2020). Default prediction using neural networks for enterprises from the post-soviet country. Ekonomicko-Manazerske Spektrum, 14(1), 43-51. https://doi.org/10.26552/ems.2020.1.43-51
- Gao, G., and Wuthrich, M. V. (2018). Feature extraction from telematics car driving heatmaps. European Actuarial Journal, 8, 383-406. https://doi.org/10.1007/s13385-018-0181-7
- Gschlossl, S., and Czado, C. (2007). Spatial modelling of claim frequency and claim size in non-life insurance. Scandinavian Actuarial Journal, 2007(3), 202-225. https://doi.org/10.1080/03461230701414764
- Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 39(3), 3659-3667. https://doi.org/10.1016/j.eswa.2011.09.058
- Ghoting, A. Otey, M. E. and Parthasarathy, S. (2004). LOADED: link-based outlier and anomaly detection in evolving data sets. In Fourth IEEE International Conference on Data Mining (ICDM'04) (pp. 387-390). IEEE.
- Heras, A., Moreno, I., and Vilar-Zanon, J. L. (2018). An application of two-stage quantile regression to insurance ratemaking. Scandinavian Actuarial Journal, 2018(9), 753-769. https://doi.org/10.1080/03461238. 2018.1452786
- Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM Sigmod Record, 29, 1-12. https://doi.org/10.1145/335191.335372
- Jorgensen, B., and De Souza, M. C. P. (1994). Fitting tweedie's compound poisson model to insurance claims data. Scandinavian Actuarial Journal, 1994(1), 69-93. https://doi.org/10.1080/03461238.1994.10413930
- Jain, R., Alzubi, J. A., Jain, N., and Joshi, P. (2019). Assessing risk in life insurance using ensemble learning. Journal of Intelligent & Fuzzy Systems, 37(3), 2969-2980. https://doi.org/10.3233/JIFS-190078
- Kas'celan, V., Kas'celan, L., and Buri'c, M. N. (2015). A nonparametric data mining approach for risk prediction in car insurance: A case study from the Montenegrin market. Economic Research-Ekonomska Istrazivanja, 29, 545-558. https://doi. org/10.1080/1331677X.2016.1175729
- Kowshalya, G., and Nandhini, M. (2018). Predicting fraudulent claims in automobile insurance. In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 1338-1343). IEEE.
- Koufakou, A., and Georgiopoulos, M. (2010). A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes. Data Mining and Knowledge Discovery, 20(2), 259-289. https://doi.org/10.1007/s10618-009-0148-z
- Liu, Y., Wang, B., and Lv, S. G. (2014). Using multi-class adaboost tree for prediction frequency of auto insurance. Journal of Applied Finance Banking, 4(5), 45-53.
- Liu, G., Lu, H., Lou, W., Xu, Y., and Yu, J. X. (2004). Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery, 9, 249-274. https://doi.org/10.1023/B:DAMI.0000041128.59011.53
- Nelder, J. A., and Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135, 370-384. https://doi.org/10.2307/2344614
- Otey, M. E., Ghoting, A., and Parthasarathy, S. (2006). Fast distributed outlier detection in mixed-attribute data sets. Data Mining and Knowledge Discovery, 12(2-3), 203-228. https://doi.org/10.1007/s10618-005-0014-6
- Olden, J. D., and Jackson, D. A. (2002). Illuminating the "black box": A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling 154, 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9
- Pesantez-Narvaez, J., Guillen, M., and Alcaniz, M. (2019). Predicting motor insurance claims using telematics data-XGBoost versus logistic regression. Risks, 7(2), 70. https://doi.org/10.3390/risks7020070
- Singh, R., Ayyar, M. P., Pavan, T. S., Gosain, S., and Shah, R. R. (2019). Automating car insurance claims using deep learning techniques. In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) (pp. 199-207). IEEE.
- Sun, N., Bai, H., Geng, Y., and Shi, H. (2017). Price evaluation model in second-hand car system based on BP neural network theory. In 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/ Distributed Computing (SNPD), Kanazawa, Japan, June 26-28 (pp. 431-436).
- Smyth, G. K., and Jorgensen, B. (2002). Fitting tweedie's compound poisson model to insurance claims data: Dispersion modelling. ASTIN Bulletin: The Journal of the IAA, 32(1), 143-157. https://doi.org/10.2143/AST.32.1.1020
- Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1
- Wuthrich, M. V. (2019). Bias regularization in neural network models for general insurance pricing. European Actuarial Journal, 10, 179-202. https://doi.org/10.1007/s13385-019-00215-z
- Yang, Y., Qian, W., and Zou, H. (2016). Insurance premium prediction via gradient tree-boosted tweedie compound poisson models. Journal of Business & Economic Statistics 43, 1-45. https://doi.org/10.48550/arXiv.1508.06378
- Yang, Y. (2001). Adaptive regression by mixing. Journal of the American Statistical Association, 96, 574-588. https://doi.org/10.1198/016214501753168262
- Yunos, Z. M., Ali, A., Shamsyuddin, S M., and Ismail, N. (2016). Predictive modelling for motor insurance claims using artificial neural networks. International Journal of Advances in Soft Computing and Its Applications, 8, 160-172. https://doi.org/10.35940/ijrte.F9873.038620
- Zhang, L., and Shen, Q. (2019). Improvement of the traditional auto insurance claims frequency model by boosting algorithm-Based on the traffic compulsory insurance data in five provinces of China. Insure To Study, 7, 67-78.