DOI QR코드

DOI QR Code

감성디자인 구현을 위한 플라스틱 필름 표면의 거칠기와 감각 특성의 상관관계 도출

Correlation of Texture and Sensory Analysis on Film Surfaces for Implementing Emotional Design

  • 투고 : 2024.07.15
  • 심사 : 2024.08.07
  • 발행 : 2024.08.31

초록

One of the main functions of packaging is promoting the products. Competitive markets demand that products appeal more to consumers in many perspectives. Other than its original purpose, which is protection, packaging has been tasked with implementing the emotional appeal of a product through unique shapes, textures, and visual designs. Understanding emotional appeals to consumer is a potential marketing strategy so that research have been done about techniques to visualize the design and print the specific textures. Especially, paper-like films are known as eco-friendly or emotional design and they are able to protect the products from oxygen or water vapor better than papers. In this study, paper-like films, which is printed with inks to have rougher surfaces, are analysed in terms of roughness, friction, imaging and sensory evaluation of subjective softness from consumers. Also, the prediction model was established with the correlation of the measured results and sensory panel test (SPT) of consumer preferences by touch. The results showed that the prediction of subjective texture preference was contributed by 63.9% for surface roughness and 36.1% for friction profile parameters. It confirmed that surface roughness characteristics should be prioritized to improve tactile preference for paper-like films.

키워드

과제정보

본 연구는 산업통상자원부의 디자인산업기술개발사업 (과제번호 : 20018682)의 연구비 지원을 받아 수행되었음.

참고문헌

  1. Yam KL, Takhistov PT, Miltz J. 2005. Intelligent packaging: concepts and applications. Journal of food science. 70(1): R1-R10. https://doi.org/10.1111/j.1365-2621.2005.tb09052.x
  2. Chen J. 2007. Surface texture of foods: Perception and characterization. Critical Reviews in Food Science and Nutrition. 47(6): 583-598. https://doi.org/10.1080/10408390600919031
  3. Jeyapoovan T, Murugan M. 2013. Surface roughness classification using image processing. Measurement. 46(7): 2065-2072. https://doi.org/10.1016/j.measurement.2013.03.014
  4. Kumar BR, Rao TS. 2012. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest Journal of Nanomaterials and Biostructures. 7(4): 1881-1889.
  5. Saif AeA, Ramli N, Poopalan P. 2010. AFM study of multilayer sol-gel BaxSr1-xTiO3 thin films. Jordan journal of physics. 3(2): 61-68.
  6. Zhou W, Apkarian R, Wang ZL, Joy D. 2007. Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications. 1-40.
  7. Liu F, Wu J, Chen K, Xue D. 2010. Morphology study by using scanning electron microscopy. Microscopy: science, technology, applications and education. 3: 1781-1792.
  8. Taylor M, Urquhart AJ, Zelzer M, Davies MC, Alexander MR. 2007. Picoliter water contact angle measurement on polymers. Langmuir. 23(13): 6875-6878. https://doi.org/10.1021/la070100j
  9. Dazzi A, Prater CB. 2017. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chemical reviews. 117(7): 5146-5173. https://doi.org/10.1021/acs.chemrev.6b00448
  10. Yokura H, Kohono S, Iwasaki MJJote. 2004. Objective hand measurement of toilet paper. Journal of Textiel Engineering. 50(1): 1-5. https://doi.org/10.4188/jte.50.1
  11. Lee, Y.J. and Ko, Y.C. 2023. Surface characterization of paper products by profilometry with a fractal dimension analysis. BioResources. 18(2): 3978-3994. https://doi.org/10.15376/biores.18.2.3978-3994
  12. Lee, J.M. and Ko, Y.C. 2023. Developing physical softness models for facial tissue products. BioResources. 19(1): 116-133. https://doi.org/10.15376/biores.19.1.116-133
  13. Ko, Y.C. and Park, J.Y. 2019. Principles of developing physical test methods for disposable consumer products. Journal PR. 34(1): 75-87. https://doi.org/10.1515/npprj-2018-0029
  14. Kweon, S.W. and Lee, Y.J. 2024. The Characteristics of Wet-laid Nonwoven Sheet Using Lyocell/Wood pulp Fibers. J. Korea TAPPI. 56(2): 30-40. https://doi.org/10.7584/JKTAPPI.2024.4.56.2.30
  15. Lee, Y.J. and Cha, J.E. 2023. Power Spectrum Analysis of Surface Roughness for Paper and Paperboard. J. Korea TAPPI. 55(6): 78-85. https://doi.org/10.7584/JKTAPPI.2023.12.55.6.78
  16. Lee, Y.J. and Kang, N.Y. 2023. Fractal Dimension Analysis of Surface Roughness for Paper and Paperboard. J. Korea TAPPI. 55(4): 3-11. https://doi.org/10.7584/JKTAPPI.2023.8.55.4.3
  17. Lee, J.G. and Park, S.H. 2010. Investigation of Properties of the PET Film Dependent on the Biaxial Stretching. Polymer (Korea). 34(6): 579-587. https://doi.org/10.7317/pk.2010.34.6.579
  18. Soon K, Harkin Jones E, Rajeev RS, Menary G, Martin PJ, Armstrong CG. 2012. Morphology, barrier, and mechanical properties of biaxially deformed poly (ethylene terephthalate) mica nanocomposites. Polymer Engineering & Science. 52(3): 532-548. https://doi.org/10.1002/pen.22114
  19. Han, K.H. and Jang, M.G. 2018. The Effects of Compatibilizers on the morphological, mechanical, and Optical Properties of Biaxially oriented poly (ethylene terephthalate)/Syndiotactic polystyrene blend Films. Macromolecular Research. 26: 254-262. https://doi.org/10.1007/s13233-018-6039-7
  20. Park, N.Y. and Ko, Y.C. 2021. Surface characterization of paper products via a stylus-type contact method. BioResources. 16(3): 5667.
  21. Moon, B.G. and Park, N.Y. 2022. Characterization of paper surfaces by friction profilometry. BioResources. 17(4): 6067-6078. https://doi.org/10.15376/biores.17.4.6067-6078
  22. Jeong, H.S. and Ko, Y.C. 2019. Effects of a stylus on the surface roughness determination in a contact method for paper and paperboard. Nordic Pulp & Paper Research Journal. 34(4): 442-452. https://doi.org/10.1515/npprj-2019-0011
  23. Ko, Y.C. and Melani, L. 2019. Surface characterization of paper and paperboard using a stylus contact method. Nordic Pulp & Paper Research Journal. 35(1): 78-88. https://doi.org/10.1515/npprj-2019-0005
  24. Fotiadis D, Scheuring S, Muller SA, Engel A, Muller DJ. 2002. Imaging and manipulation of biological structures with the AFM. Micron. 33(4): 385-397. https://doi.org/10.1016/S0968-4328(01)00026-9
  25. Chen, Y. and Huang, W. 2004. Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM. Measurement science and technology. 15(10): 2005.
  26. Branko I, Miroslav D, Dusan S. 2000. The influence of the contact surface roughness on the static friction coefficient. Tribology in industry. 22(3&4): 41.
  27. Bhushan B. Surface roughness analysis and measurement techniques. Modern tribology handbook, two volume set: CRC press; 2000:79-150.
  28. Chibowski EJ. 2005. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis. Advances in colloid and interface science. 113(2-3): 121-131. https://doi.org/10.1016/j.cis.2005.01.005
  29. Chau T, Bruckard W, Koh P, Nguyen A. 2009. A review of factors that affect contact angle and implications for flotation practice. Advances in colloid and interface science. 150(2): 106-115. https://doi.org/10.1016/j.cis.2009.07.003
  30. Lee, M.H. and Cho, I.S. 2023. The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating. J. Korea Soc Packag. Sci. & Tech. 29(3): 153-161.