Acknowledgement
본 연구는 산업통상자원부의 디자인산업기술개발사업 (과제번호 : 20018682)의 연구비 지원을 받아 수행되었음.
References
- Yam KL, Takhistov PT, Miltz J. 2005. Intelligent packaging: concepts and applications. Journal of food science. 70(1): R1-R10. https://doi.org/10.1111/j.1365-2621.2005.tb09052.x
- Chen J. 2007. Surface texture of foods: Perception and characterization. Critical Reviews in Food Science and Nutrition. 47(6): 583-598. https://doi.org/10.1080/10408390600919031
- Jeyapoovan T, Murugan M. 2013. Surface roughness classification using image processing. Measurement. 46(7): 2065-2072. https://doi.org/10.1016/j.measurement.2013.03.014
- Kumar BR, Rao TS. 2012. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest Journal of Nanomaterials and Biostructures. 7(4): 1881-1889.
- Saif AeA, Ramli N, Poopalan P. 2010. AFM study of multilayer sol-gel BaxSr1-xTiO3 thin films. Jordan journal of physics. 3(2): 61-68.
- Zhou W, Apkarian R, Wang ZL, Joy D. 2007. Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications. 1-40.
- Liu F, Wu J, Chen K, Xue D. 2010. Morphology study by using scanning electron microscopy. Microscopy: science, technology, applications and education. 3: 1781-1792.
- Taylor M, Urquhart AJ, Zelzer M, Davies MC, Alexander MR. 2007. Picoliter water contact angle measurement on polymers. Langmuir. 23(13): 6875-6878. https://doi.org/10.1021/la070100j
- Dazzi A, Prater CB. 2017. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chemical reviews. 117(7): 5146-5173. https://doi.org/10.1021/acs.chemrev.6b00448
- Yokura H, Kohono S, Iwasaki MJJote. 2004. Objective hand measurement of toilet paper. Journal of Textiel Engineering. 50(1): 1-5. https://doi.org/10.4188/jte.50.1
- Lee, Y.J. and Ko, Y.C. 2023. Surface characterization of paper products by profilometry with a fractal dimension analysis. BioResources. 18(2): 3978-3994. https://doi.org/10.15376/biores.18.2.3978-3994
- Lee, J.M. and Ko, Y.C. 2023. Developing physical softness models for facial tissue products. BioResources. 19(1): 116-133. https://doi.org/10.15376/biores.19.1.116-133
- Ko, Y.C. and Park, J.Y. 2019. Principles of developing physical test methods for disposable consumer products. Journal PR. 34(1): 75-87. https://doi.org/10.1515/npprj-2018-0029
- Kweon, S.W. and Lee, Y.J. 2024. The Characteristics of Wet-laid Nonwoven Sheet Using Lyocell/Wood pulp Fibers. J. Korea TAPPI. 56(2): 30-40. https://doi.org/10.7584/JKTAPPI.2024.4.56.2.30
- Lee, Y.J. and Cha, J.E. 2023. Power Spectrum Analysis of Surface Roughness for Paper and Paperboard. J. Korea TAPPI. 55(6): 78-85. https://doi.org/10.7584/JKTAPPI.2023.12.55.6.78
- Lee, Y.J. and Kang, N.Y. 2023. Fractal Dimension Analysis of Surface Roughness for Paper and Paperboard. J. Korea TAPPI. 55(4): 3-11. https://doi.org/10.7584/JKTAPPI.2023.8.55.4.3
- Lee, J.G. and Park, S.H. 2010. Investigation of Properties of the PET Film Dependent on the Biaxial Stretching. Polymer (Korea). 34(6): 579-587. https://doi.org/10.7317/pk.2010.34.6.579
- Soon K, Harkin Jones E, Rajeev RS, Menary G, Martin PJ, Armstrong CG. 2012. Morphology, barrier, and mechanical properties of biaxially deformed poly (ethylene terephthalate) mica nanocomposites. Polymer Engineering & Science. 52(3): 532-548. https://doi.org/10.1002/pen.22114
- Han, K.H. and Jang, M.G. 2018. The Effects of Compatibilizers on the morphological, mechanical, and Optical Properties of Biaxially oriented poly (ethylene terephthalate)/Syndiotactic polystyrene blend Films. Macromolecular Research. 26: 254-262. https://doi.org/10.1007/s13233-018-6039-7
- Park, N.Y. and Ko, Y.C. 2021. Surface characterization of paper products via a stylus-type contact method. BioResources. 16(3): 5667.
- Moon, B.G. and Park, N.Y. 2022. Characterization of paper surfaces by friction profilometry. BioResources. 17(4): 6067-6078. https://doi.org/10.15376/biores.17.4.6067-6078
- Jeong, H.S. and Ko, Y.C. 2019. Effects of a stylus on the surface roughness determination in a contact method for paper and paperboard. Nordic Pulp & Paper Research Journal. 34(4): 442-452. https://doi.org/10.1515/npprj-2019-0011
- Ko, Y.C. and Melani, L. 2019. Surface characterization of paper and paperboard using a stylus contact method. Nordic Pulp & Paper Research Journal. 35(1): 78-88. https://doi.org/10.1515/npprj-2019-0005
- Fotiadis D, Scheuring S, Muller SA, Engel A, Muller DJ. 2002. Imaging and manipulation of biological structures with the AFM. Micron. 33(4): 385-397. https://doi.org/10.1016/S0968-4328(01)00026-9
- Chen, Y. and Huang, W. 2004. Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM. Measurement science and technology. 15(10): 2005.
- Branko I, Miroslav D, Dusan S. 2000. The influence of the contact surface roughness on the static friction coefficient. Tribology in industry. 22(3&4): 41.
- Bhushan B. Surface roughness analysis and measurement techniques. Modern tribology handbook, two volume set: CRC press; 2000:79-150.
- Chibowski EJ. 2005. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis. Advances in colloid and interface science. 113(2-3): 121-131. https://doi.org/10.1016/j.cis.2005.01.005
- Chau T, Bruckard W, Koh P, Nguyen A. 2009. A review of factors that affect contact angle and implications for flotation practice. Advances in colloid and interface science. 150(2): 106-115. https://doi.org/10.1016/j.cis.2009.07.003
- Lee, M.H. and Cho, I.S. 2023. The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating. J. Korea Soc Packag. Sci. & Tech. 29(3): 153-161.