DOI QR코드

DOI QR Code

An Analysis of Domestic and Foreign Research Trends Related to Libraries and Artificial Intelligence

도서관과 인공지능 관련 국내외 연구 동향 분석

  • 김형태 (충남대학교 문헌정보학과 대학원 ) ;
  • 곽승진 (충남대학교 문헌정보학과)
  • Received : 2024.07.26
  • Accepted : 2024.08.14
  • Published : 2024.08.31

Abstract

This study analyzed domestic and international research trends on libraries and artificial intelligence(AI). Among the papers published from 1995 to 2024, papers with keywords for libraries and artificial intelligence were targeted. A total of 13 papers registered in the KCI in Korea and 305 papers registered in the Web of Science(WOS) in foreign countries were collected. Targeting the abstracts and keywords of the collected papers, the frequency of keyword appearance by period was identified and network analysis was performed. As a result of the analysis, it was found that research related to artificial intelligence in libraries is increasing rapidly and is diversifying and subdividing. In addition, it was confirmed that if the service and user-related research was conducted in the early stages, it was gradually changing to the target technology, data, and data-related research.

본 연구는 도서관과 인공지능(AI)에 관한 국내외 연구 동향을 분석하였다. 1995년부터 2024년까지 발표된 논문 중 도서관과 인공지능의 키워드를 함께 갖고 있는 논문을 대상으로 하였다. 국내는 KCI에 등록된 13편, 국외는 Web of Science(WOS)에 등록된 305편의 논문을 수집하였다. 수집된 논문의 초록과 키워드를 대상으로 하여 기간별로 키워드 출현 빈도를 파악하고 네트워크 분석을 수행하였다. 분석 결과 도서관의 인공지능과 관련된 연구는 빠르게 증가하고 있으며 다양화 및 세분화되고 있음을 알 수 있었다. 또한, 서비스 및 사용자 관련 연구가 초기에 이뤄졌다면, 점차 적용 대상 기술 및 자료 및 데이터 관련 연구 등으로 변화하고 있음을 확인하였다.

Keywords

Acknowledgement

이 연구는 충남대학교에 의해 지원되었음.

References

  1. Bae, YoulMi (2024). Analysis of research trends of young children's emotional regulation using keyword network analysis: focusing on domestic academic journals. Journal of children's Literature and Education, 25(1), 285-306. https://doi.org/10.22154/JCLE.25.1.14 
  2. Ham, Sooyoung & Choi, Yoonkyung (2023). ChatGPT era, technology-induced changes and possibilities in reading. Journal of AI Humanities, 14, 83-111. https://doi.org/10.46397/JAIH.14.4 
  3. Hwang, YunJeong, Ha, Mikyoung, & Byun, Gidong (2024). Analyzing ABM research trends with keyword network analysis. Review of Architecture and Building Science, 40(3), 89-100. 
  4. Jang, Suhyun & Nam, Young Joon (2023). A study on the role of university libraries in the cultivation of generative AI literacy by users. Journal of the Korean Society for Information Management, 40(2), 263-282. https://doi.org/10.3743/KOSIM.2023.40.2.263 
  5. Jung, Woojin, Oh, Chanhee, & Zhu, Yongjun (2021). Analyzing research trends of domestic artificial intelligence research using network analysis and dynamic topic modelling. Journal of the Korean Society for Library and Information Science, 55(4), 141-157. http://dx.doi.org/10.4275/KSLIS.2021.55.4.141 
  6. Kim, Gyuhwan & Jeong, Do-heon (2023). Analysis of space use patterns of public library users through AI cameras. Journal of the Korean Society for Library and Information Science, 57(4), 333-351. http://doi.org/10.4275/KSLIS.2023.57.4.333 
  7. Kim, WhaJung (2018). A study on analysis of the research trend and the knowledge structure of music education by analyzing keyword network. Research in Music Pedagogy, 21(1), 1-30. 
  8. Kwak, Woojung & Noh, Younghee (2021). A study on the current state of the library's AI service and the service provision plan. Journal of the Korean Society for Library and Information Science, 52(1), 155-178. https://doi.org/10.16981/kliss.52.1.202103.155 
  9. Lee, Jeongmee (2021). A study on the data literacy education in the library of the Chat GPT, generative AI era. Journal of the Korean Society for Library and Information Science, 57(3), 303-323. https://doi.org/10.4275/KSLIS.2023.57.3.303 
  10. Lee, Soosang (2014). A content analysis of journal articles using the language network analysis methods. Journal of the Korean Society for Information Management, 31(4), 49-68.  https://doi.org/10.3743/KOSIM.2014.31.4.049
  11. Lee, Taekkyeun (2023). Research trend on edge computing based on keyword frequency, centrality analysis and social network analysis: focusing on United States, United Kingdom, South Korea. International Journal of Contents, 23(3), 76-89. https://doi.org/10.5392/JKCA.2023.23.03.076 
  12. Lee, Yuri (2016). The analysis of network characteristics of social enterprises and its impact on local community: focusing on social venture valley in Seongsu-dong Area. Master's thesis, Dept. of Urban Development & Management, Graduate School of Urban Studies, Hanyang University. 
  13. Ministry of Science and ICT (2023). The Fifth Science and Technology Master Plan (2023~2027). 
  14. Gregory, C. (2023). The Perseus Digital Library and the future of libraries. International Journal on Digital Libraries, 24, 117-128. https://doi.org/10.1007/s00799-022-00333-2 
  15. Hellsten, I., Opthof, T., & Leydesdorff, L. (2020). N-mode network approach for socio-semantic analysis of scientific publications. Poetic, 78, 101427. https://doi.org/10.1016/j.poetic.2019.101427 
  16. Jennifer, G. (2015). Introduction to Social Media Investigation: A Hands-on Approach. Amsterdam: Syngress. 
  17. Kurzweil, R. (2005). The Singularity is Near: When Humans Transcend Biology. New York, NY: Viking. 
  18. Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of Applied Learning & Teaching, 6(1), 342-363. https://doi.org/10.37074/jalt.2023.6.1.9 
  19. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433-460. https://doi.org/10.1093/mind/LIX.236.433