Abstract
AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.
지능형 사물인터넷인 AIoT는 IoT 디바이스가 측정한 데이터를 수집하고 머신러닝 기술을 적용해 예측 모델을 만들어 활용하는 기술을 의미한다. AIoT 기술 교육을 위한 기존 연구에서는 교육용 AIoT 플랫폼 구축하고 사용법을 교육하는 데 초점을 맞추었다. 그러나, IoT 디바이스가 측정한 데이터로부터 머신러닝 모델이 자동 생성되고 활용되는 과정을 교육하는 사례 연구는 부족하였다. 본 논문에서는 AIoT 기술 교육을 위한 머신러닝 모델 활용 사례를 개발하였다. 본 논문에서 개발한 사례는 AIoT 디바이스의 데이터 수집, 데이터 전처리, 머신러닝 모델 자동 생성, 모델별 정확도 산출 및 유효 모델 결정, 유효 모델을 활용한 데이터 예측 단계들로 구성되었다. 본 논문에서는 AIoT 디바이스의 센서들이 서로 다른 범위의 값들을 측정하는 것을 고려하였고, 이에 따른 데이터 전처리 사례를 제시하였다. 또한 여러 머신러닝 모델들을 자동 생성하고 이 모델들 중 정확도가 높은 유효모델을 결정하여, AIoT 디바이스가 어떤 정보를 예측할 수 있는 가를 스스로 결정하는 사례를 개발하였다. 개발한 사례를 적용하면, AIoT를 활용한 예측기반 사물 제어와 같은 AIoT 활용 교육 콘텐츠를 다양하게 개발할 수 있다.