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Abstract 

 This study proposes a deep learning-based LSTM model to predict the state of charge (SOC) of lithium-ion 

batteries. The model was trained using data collected under various temperature and load conditions, including 

measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of 

Engineering. The LSTM model effectively models temporal patterns in the data by learning long-term 

dependencies. Performance evaluation by epoch showed that the predicted SOC improved from 14.8400 at epoch 

10 to 12.4968 at epoch 60, approaching the actual SOC value of 13.5441. The mean absolute error (MAE) and 

root mean squared error (RMSE) also decreased from 0.9185 and 1.3009 at epoch 10 to 0.2333 and 0.5682 at 

epoch 60, respectively, indicating continuous improvement in predictive performance. This study demonstrates 

the validity of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance battery 

management systems. 
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1. INTRODUCTION  
Currently, major countries, including the United States and Europe, have introduced environmental 

regulations to reduce greenhouse gas emissions by 20-30% starting in 2020, which has promoted the use of 

renewable energy and led to rapid growth of the battery market [1]. Batteries play a key role in the smart grid 

and electric vehicle industries, and lithium-ion batteries are widely adopted as replacements for lead-acid 

batteries due to their high energy density and long lifespan [2]. In particular, batteries for electric vehicles 

require high capacity and a complex operating environment, and a systematic battery management system is 

essential to manage them safely and reliably [3]. 

SOC is a very important indicator in determining the condition of the battery and is defined as the ratio of 

the rated capacity to the remaining charge of the operating battery [4]. However, due to the nonlinearity and 

electrochemical reaction of the battery, SOC cannot be measured directly, and for this reason, various 

estimation methods have been studied. The current integration method, one of the existing SOC estimation 

methods, is simple and effective, but is affected by factors such as initial value, current sensor error, and battery 

deterioration [5]. The Kalman filter (KF) and its improved form, the extended Kalman filter (EKF), enable 

nonlinear system estimation for linear time-varying systems, but have the disadvantage of complexity of 

implementation and many parameters and conditions that must be considered during modeling [6-8]. 

To solve these problems, artificial intelligence-based SOC estimation methods have been proposed. 

Recently, with the explosive increase in data and the advancement of computer equipment, artificial 

intelligence technology has gained attention [9]. Artificial intelligence-based SOC estimation methods include 
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artificial neural networks (ANN), support vector machines (SVM), fuzzy algorithms, and recurrent neural 

networks (RNN), and these methods provide high accuracy in various current ranges. RNNs can learn sequence 

data, and with the introduction of memory cells such as LSTM or GRU, learning on large-scale data over long 

periods has become possible. Recently, research has been conducted to estimate SOC in combination with the 

convolutional neural network (CNN) method. 

Currently, artificial intelligence has become an important issue globally, and battery state-of-charge (SOC) 

prediction using deep learning deals with nonlinear battery characteristics in real-time and shows high 

adaptability to various battery types. In this paper, we propose a method to predict SOC using an RNN network 

with LSTM memory cells based on the characteristics of lithium-ion batteries. 
 

2. RESEARCH MODEL 

Recurrent neural networks (RNNs) emerged for modeling time series data but have problems such as long-

term dependency and gradient vanishing. To overcome these shortcomings, the LSTM network was proposed 

in the mid-1990s. LSTM adds a cell state to the hidden state, which helps in learning long-term dependencies, 

making it widely used for time series data. This figure 1 shows the structure of the LSTM network for SOC 

estimation, using voltage (Vt), current (It), and temperature (Tt) as input data. 

 

 

Figure 1. LSTM network structure for SOC estimation 

For SOC estimation using an LSTM network, the input data consists of voltage (Vt), current (It), and 

temperature (Tt) at time step t. This input data is processed through an LSTM cell to estimate the SOC at that 

time step. The LSTM cell can process new inputs while remembering information from previous time steps.  

This figure 2 shows the flow of information inside an LSTM cell, illustrating how the input gate, forget 

gate, and output gate operate. 

 

Figure 2. Flow diagram inside a forward-flowing LSTM cell 

Inside an LSTM cell, there are input gates, forget gates, and output gates, each controlling the flow of 

information, with the cell state (Ct) handling long-term memory. Each gate combines the input data and the 



468                                 International Journal of Advanced Culture Technology Vol.12 No.3 466-470(2024) 

 

previous hidden state (ht-1) to decide what information to remember and discard. During the training process, 

a loss function is used to minimize the error between the predicted and actual values, with the mean squared 

error (MSE) being commonly used. This process helps the LSTM model to gradually improve its prediction 

accuracy. 

 

Figure 3. Comparison between SOC and OCV in (a), (b), (c), and (d) CS2 battery cell numbers 35, 36, 
37, and 38 in Figure 3 

This figure 3 compares the relationship between SOC and OCV for CS2 battery cells 35, 36, 37, and 38. 

Here, Cn represents the rated capacity, and i is the current at each time step. Although Cn is a variable value 

depending on the actual degree of battery aging, it is assumed to be constant in this paper since short-cycle 

data is used. 

 

3. STRUCTURAL DESIGN OF LSTM MODEL 

This section explains the characteristics of the battery and covers data preprocessing and implementation 

methods for the LSTM network model. It analyzes the learning ability and performance according to the LSTM 

structure and model parameter settings. To write the internal structure of the LSTM cell into a Python program, 

a library such as TensorFlow or Keras is used to perform calculations that update each gate and cell state. 

 

Figure 4. Flowchart for LSTM structure design 

 

(a) 

 
(b) 

 

(c) 
 

(d) 

 1 
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The LSTM model accepts input data, processes it through LSTM cells, and produces output data. Inside an 

LSTM cell, information is processed through several gates. Figure 4's pseudocode shows the structure of the 

LSTM model. 

 

4. IMPLEMENTATION AND RESULTS 

The software environment for the experiment was developed using Python version 3.10, and the artificial 

intelligence library used was the PyTorch-based MMDetection API. The hardware environment consisted of 

Windows 10 OS, an i9-9900K CPU, 128GB RAM, a 128GB GPU, and an NVIDIA RTX 6000. 

 

Table 1. Types of battery data 

Decision  Battery Type Number of Data Remarks 

Battery Dataset 

 CS35 911 

3931 rows × 22 columns 
 CS36 950 
 CS37 1016 
 CS38 1056 

Total  4 Cell 3933  
 

In this paper, model parameters necessary for model construction or training process are set, and the actual 

SOC and predicted SOC are compared and analyzed according to epochs 10, 20, 30, 40, 50, and 60. Table 5 

and Figure 9 show that as the epochs progress, the model tends to get closer to the actual SOC value, although 

it sometimes slightly overestimates or underestimates the SOC value at certain epochs. Epoch 60 shows the 

most accurate predictions, indicating that the model is gradually optimizing with sufficient training. Table 2 

show the predicted SOC, MAE, and RMSE values for each epoch, and this data is used to analyze the model's 

training process and performance. As the epochs progress, MAE and RMSE values show a decreasing trend, 

indicating that the model's prediction accuracy is improving. The predicted SOC for epoch 10 was 14.8400, 

MAE was 0.9185, and RMSE was 1.3009, but by epoch 60, the predicted SOC was 12.4968, MAE was 0.2333, 

and RMSE was 0.5682, showing continuous improvement in model performance. Overall, as the number of 

epochs increases, the predicted SOC values gradually stabilize, and MAE and RMSE values decrease, 

indicating that the model is well-trained and its performance is improving. 

 

Table 5. LSTM model performance across epochs 

Epoch Predicted SOC MAE RMSE 

Epoch 10 
Epoch 20 

14.8400 
12.6617 

0.9185 
0.5693 

1.3009 
0.8812 

Epoch 30 12.4947 0.3403 0.6511 
Epoch 40 12.6203 0.2706 0.5968 

Epoch 50 12.5185 0.2331 0.5793 
Epoch 60 12.4968 0.2333 0.5682 

 

5. CONCLUSION 

Accurate state of charge (SOC) prediction of lithium-ion batteries plays an important role in various 

applications such as electric vehicles and smart grids. Accurate estimation of SOC is essential to ensure 

efficient use, longevity, and safety of batteries. However, accurately estimating SOC is challenging due to the 

complex nonlinear nature of batteries and varying operating environments. This study proposes a method to 

estimate the SOC of lithium-ion batteries using deep learning, particularly LSTM models. LSTM can learn 
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long-term dependencies from sequence data and effectively model temporal patterns in battery data. This study 

uses battery data collected from various charge and discharge cycles to train an LSTM model and evaluates 

the model's performance by epoch to derive the optimal model configuration. The results show that the 

predicted SOC at epoch 10 was 14.8400, higher than the actual value, but at epoch 60, the predicted SOC was 

12.4968, closer to the actual value. Additionally, MAE and RMSE values decreased as epochs progressed, 

indicating improved model prediction performance. In conclusion, as the model learns, it gets closer to the 

actual SOC value, and the error rate consistently decreases. Therefore, this model can be evaluated as a useful 

tool for SOC prediction. 
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