DOI QR코드

DOI QR Code

Machine Learning-Based Retrofit Scheme Development for Seismically Vulnerable Reinforced Concrete School Buildings

기계학습기반 기둥 파괴유형 분류모델을 활용한 학교건축물의 내진보강전략 구축

  • Kim, Subin (Department of Architecture Engineering, Gyeongsang National University) ;
  • Choi, Insub (Department of Architectural Engineering, Keimyung University) ;
  • Shin, Jiuk (Department of Architecture Engineering, Gyeongsang National University)
  • 김수빈 (경상국립대학교 건축공학과) ;
  • 최인섭 (계명대학교 건축공학과) ;
  • 신지욱 (경상국립대학교 건축공학과)
  • Received : 2024.05.08
  • Accepted : 2024.07.22
  • Published : 2024.09.01

Abstract

Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(RS-2024-00348713) 및 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-003)의 결과임.

References

  1. Choi I, Kim D, Kim J. Optimal retrofit quantity of exterior steel brace methods on minimizing seismic loss for non-ductile reinforced concrete school buildings in Korea. Bull Earthquake Eng. 2023 Nov;22:1055-1079. https://doi.org/10.1007/s10518-023-01809-5
  2. O'Reilly GJ, Perrone D, Fox M, Monteiro R, Filiatrault A. Seismic assessment and loss estimation of existing school buildings in Italy. Engineering Structures. 2018 Aug;168:142-162. https://doi.org/10.1016/j.engstruct.2018.04.056
  3. Al-Bukhaiti K, Yanhui L, Shichun Z, Abas H, Daguang H, Nan X, Lang Y, Xing Yu Y. Effect of the axial load on the dynamic response of the wrapped CFRP reinforced concrete column under the asymmetrical lateral impact load. PLoS One. 2023 Jun;18(6).
  4. Shin J, Jeon JS, Kim J. Numerical column model for damaged non-ductile reinforced concrete frame repaired using FRP jacketing system. J Earthq Eng Soc Korea. 2018 Jul;22(5):291-298. https://doi.org/10.5000/EESK.2018.22.5.291
  5. Kim KM, Lee SH, Oh SH. Seismic Performance Evaluation of Existing Low-rise RC Frames with Non-seismic Detail. J Earthq Eng Soc Korea. 2013 May;17(3):97-105. https://doi.org/10.5000/EESK.2013.17.3.97
  6. Shin J. Forced vibration testing of full-scale non-seismic reinforced concrete frame structure retrofitted using FRP jacketing system. J Earthq Eng Soc Korea. 2018 Jul;22(5):281-289. https://doi.org/10.5000/EESK.2018.22.5.281
  7. Shin KJ, Lee SH, Lee HD, Kwon HS. Seismic-strengthening effect of steel shear wall with circular opening through shaking table test on reinforced concrete frame, The Regional Association of Architectural Institute of Korea. 2016 Jan;18(2):107-114.
  8. Wang Y, Chen W, Li D, Xu H, Zhang F, Guo X. Experimental and numerical investigations of the seismic performance of reinforced concrete frames strengthened with CFRP sheets. Buildings. 2023 Aug;13(9):2195.
  9. Shin J, Scott DW, Stewart LK, Yang CS, Wright TR, DesRoches R. Dynamic response of a full-scale reinforced concrete building frame retrofitted with FRP column jackets. Engineering Structures. 2016 Oct;125:244-253. https://doi.org/10.1016/j.engstruct.2016.07.016
  10. Song MA, Lee S, Lee K. Seismic Performance Evaluation of the Low-Rise Buildings with Different Seismic Retrofit Procedures. J Earthq Eng Soc Korea. 2016 Dec;20(7_spc):553-560. https://doi.org/10.5000/EESK.2016.20.7.553
  11. Ozkul TA, Kurtbeyoglu A, Borekci M, Zengin B, Kocak A. Effect of shear wall on seismic performance of RC frame buildings. Eng Fail Anal. 2019 Jun;100:60-75. https://doi.org/10.1016/j.engfailanal.2019.02.032
  12. Berry M, Parrish M, Eberhard M. PEER structural performance database user's manual (version 1.0). Berkeley: University of California; c2004.
  13. Yoshikawa H, Miyagi T. Ductility and Failure Modes of Singly Reinforced Concrete Columns. Modeling of Inelastic Behavior of RC Structures Under Seismic Loads: American Society of Civil Engineers; c2001. p. 35-368.
  14. Sezen H, Moehle JP. Shear strength model for lightly reinforced concrete columns. J Struct Eng. 2004 Oct;130(11):1692-1703. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1692)
  15. Sheikh SA, Yeh CC. Flexural behavior of confined concrete columns. In Journal Proceedings. 1986 May;83(3):389-404. https://doi.org/10.14359/10440
  16. Mo YL, Wang SJ. Seismic behavior of RC columns with various tie configurations. J Struct Eng. 2000 Oct;126(10):1122-1130. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122)
  17. Priestley MJ, Park R. Strength and ductility of concrete bridge columns under seismic loading. Structural Journal. 1987 Jan;84(1): 61-76. https://doi.org/10.14359/2800
  18. Bazant ZP, Kwon Y. Failure of slender and stocky reinforced concrete columns: Tests of size effect. Materials and Structures. 1994 Mar; 27: 79-90. https://doi.org/10.1007/BF02472825
  19. Korea Road Research Institute. Behavior of RC Columns and Composite Columns using High Strength Concrete. Korea Expressway Corporation; c1999. Korean.
  20. Shi Q, Ma L, Wang Q, Wang B, Yang K. Seismic performance of square concrete columns reinforced with grade 600 MPa longitudinal and transverse reinforcement steel under high axial load. In Structures. 2021 Aug;32:1955-1970. https://doi.org/10.1016/j.istruc.2021.03.110
  21. Mo YL, Wang SJ. Seismic behavior of RC columns with various tie configurations. J Struct Eng. 2000 Oct;126(10):1122-1130. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122)
  22. Wang X, Zhang Y, Su Y, Feng Y. Experimental investigation on the effect of reinforcement ratio to capacity of RC column to resist lateral impact loading. Systems Engineering Procedia. 2011;1:35-41. https://doi.org/10.1016/j.sepro.2011.08.007
  23. Grgic N, Radnic J, Smilovic M., Baloevic G. The shake-table study of the effect of longitudinal reinforcement ratio on the behavior of concrete cantilever columns: Rutteltischuntersuchung uber den Einfluss des Langsbewehrungsverhaltnisses auf das Verhalten von Betonkragarmen. Materialwissenschaft und Werkstofftechnik. 2018 May;49(5):606-618. https://doi.org/10.1002/mawe.201700246
  24. Karaton M., Awla HA. Numerical investigation of the effect on ultimate loading capacity of different longitudinal reinforcement ratios of a RC portal frame. J Struct Eng. 2018 Oct;1(3):147-154. https://doi.org/10.31462/jseam.2018.03147154
  25. Kim S, Oh K, Shin J. Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column. J Earthq Eng Soc Korea. 2024 Mar;28(2):113-119. https://doi.org/10.5000/EESK.2024.28.2.113
  26. Mirmiran A, Shahawy M, Samaan M, Echary HE, Mastrapa JC, Pico O. Effect of column parameters on FRP-confined concrete. Journal of Composites for construction. 1998 Nov;2(4):175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
  27. Spoelstra MR, Monti G. FRP-confined concrete model. Journal of composites for construction. 1999 Aug;3(3):143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  28. Shin J, Jeon JS. Seismic damage mitigation strategy using an FRP column jacketing system in gravity-designed reinforced concrete building frames. Composite Structures. 2022 Jan;279:114700.
  29. Fam AZ, Rizkalla SH. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes. Structural Journal. 2001 Jul;98(4):451-461. https://doi.org/10.14359/10288
  30. Popovics S. A numerical approach to the complete stress-strain curve of concrete. Cement and concrete research. 1973 Sep;3(5): 583-599. https://doi.org/10.1016/0008-8846(73)90096-3
  31. Mander JB, Priestley MJ, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng. 1988 Sep;114(8):1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  32. Richart FE, Brandtzaeg A, Brown RL. A study of the failure of concrete under combined compressive stresses. In: Bulletin no. 185, Univ. of Illinois, Eng. Experimental Station: Champaign, Ill; c1928.
  33. Gardner NJ. Triaxial behavior of concrete. ACI L. 1969 Feb;66(2): 136-146. https://doi.org/10.14359/7351
  34. Shin J, Jeon JS, Wright TR. Seismic mobile shaker testing of full-scale RC building frames with high-strength NSM-FRP hybrid retrofit system. Composite Structures. 2019 Oct;226:111207.
  35. Fiorato AE. An investigation of the interaction of reinforced concrete frames with masonry filler walls. University of Illinois at Urbana-Champaign; c1971.