Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant (NRF-2024M3A9H5043141). We are grateful to all blood donors and the supportive laboratory personnel who contributed in samples collection and diagnosis in the Pakistan.
References
- World Health Organization. World Malaria Report 2022. World Health Organization. Geneva, Switzerland. 2022.
- Fernandez-Becerra C, Pein O, de Oliveira TR, Yamamoto MM, Cassola AC, et al. Variant proteins of Plasmodium vivax are not clonally expressed in natural infections. Mol Microbiol 2005;58(3):648-658. https://doi.org/10.1111/j.1365-2958.2005.04850.x
- del Portillo HA, Lanzer M, Rodriguez-Malaga S, Zavala F, Fernandez-Becerra C. Variant genes and the spleen in Plasmodium vivax malaria. Int J Parasitol 2004;34(13-14):1547-1554. https://doi.org/10.1016/j.ijpara.2004.10.012
- Pasternak ND, Dzikowski R. PfEMP1: an antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int J Biochem Cell Biol 2009;41(7):1463-1466. https://doi.org/10.1016/j.biocel.2008.12.012
- Fernandez-Becerra C, Yamamoto MM, Vencio RZ, Lacerda M, Rosanas-Urgell A, et al. Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily. Trends Parasitol 2009;25(1):44-51. https://doi.org/10.1016/j.pt.2008.09.012
- Arevalo-Herrera M, Chitnis C, Herrera S. Current status of Plasmodium vivax vaccine. Hum Vaccin 2010;6(1):124-132. https://doi.org/10.4161/hv.6.1.9931
- Bull PC, Abdi AI. The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: prospects for a vaccine. Parasitology 2016;143(2):171-186. https://doi.org/10.1017/S0031182015001274
- Oliveira TR, Fernandez-Becerra C, Jimenez MC, Del Portillo HA, Soares IS. Evaluation of the acquired immune responses to Plasmodium vivax VIR variant antigens in individuals living in malaria-endemic areas of Brazil. Malar J 2006;5:83. https://doi.org/10.1186/1475-2875-5-83
- Lee S, Choi YK, Goo YK. Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea. Malar J 2021;20(1):288. https://doi.org/10.1186/s12936-021-03810-2
- Na BK, Kim TS, Lin K, Baek MC, Chung DI, et al. Genetic polymorphism of vir genes of Plasmodium vivax in Myanmar. Parasitol Int 2021;80:102233. https://doi.org/10.1016/j.parint.2020.102233
- Son UH, Dinzouna-Boutamba SD, Lee S, Yun HS, Kim JY, et al. Diversity of vir genes in Plasmodium vivax from endemic regions in the Republic of Korea: an initial evaluation. Korean J Parasitol 2017;55(2):149-158. https://doi.org/10.3347/kjp.2017.55.2.149
- Gupta P, Pande V, Das A, Singh V. Genetic polymorphisms in VIR genes among Indian Plasmodium vivax populations. Korean J Parasitol 2014;52(5):557-564. https://doi.org/10.3347/kjp.2014.52.5.557
- Gupta P, Das A, Singh OP, Ghosh SK, Singh V. Assessing the genetic diversity of the vir genes in Indian Plasmodium vivax population. Acta Trop 2012;124(2):133-139. https://doi.org/10.1016/j.actatropica.2012.07.002
- Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993;61(2):315-320. https://doi.org/10.1016/0166-6851(93)90077-b
- Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009;25(11):1451-1452. https://doi.org/10.1093/bioinformatics/btp187
- Leigh JW, Bryant D. PopART: full-feature software for haplotype network construction. Methods Ecol Evol 2015;6(9):1110-1116. https://doi.org/10.1111/2041-210X.12410
- Goo YK. Vivax malaria and the potential role of the subtelomeric multigene vir superfamily. Microorganisms 2022;10(6):1083. https://doi.org/10.3390/microorganisms10061083
- Fernandez-Becerra C, Bernabeu M, Castellanos A, Correa BR, Obadia T, et al. Plasmodium vivax spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci U S A 2020;117(23):13056-13065. https://doi.org/10.1073/pnas.1920596117
- Wesolowski A, Taylor AR, Chang HH, Verity R, Tessema S, et al. Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med 2018;16(1):190. https://doi.org/10.1186/s12916-018-1181-9
- Bonnell E, Pasquier E, Wellinger RJ. Telomere replication: solving multiple end replication problems. Front Cell Dev Biol 2021;9:668171. https://doi.org/10.3389/fcell.2021.668171
- Eckshtain-Levi N, Weisberg AJ, Vinatzer BA. The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. Mol Plant Pathol 2018;19(9):2187-2192. https://doi.org/10.1111/mpp.12688
- Hudson RR, Kaplan NL. Deleterious background selection with recombination. Genetics 1995;141(4):1605-1617. https://doi.org/10.1093/genetics/141.4.1605
- Fantin RF, Coelho CH, Berhe AD, Magalhaes LMD, Pereira DB, et al. Immunological characterization of a VIR protein family member (VIR-14) in Plasmodium vivax-infected subjects from different epidemiological regions in Africa and South America. PLoS Negl Trop Dis 2023;17(4):e0011229. https://doi.org/10.1371/journal.pntd.0011229