DOI QR코드

DOI QR Code

Microstructure and mechanical properties of ternary pastes activated with multi-colors glass and brick wastes

  • I.Y. Omri (Faculte of Technology, Geomaterials Development Laboratory, M'sila University) ;
  • N. Tebbal (Institute of Technical Urban Management, Geomaterials Development Laboratory, M'sila University) ;
  • Z. Rahmouni (Faculte of Technology, Geomaterials Development Laboratory, M'sila University)
  • Received : 2022.06.14
  • Accepted : 2024.07.20
  • Published : 2024.03.25

Abstract

Disposal of waste glass derived from bottle or packaging glass, flat glass, domestic glass is one of the major environmental defies. Moreover, the remnants of bricks resulting from the remnants of buildings are also considered an important factor in polluting the environment due to the difficulty of filling or getting rid it. The aim of this study is to valorize these wastes through chemical activation to be an environmentally friendly material. The Microstructure, compressive strength, setting time, drying shrinkage, water absorption of different pastes produced by clear glass (CG), green glass (GG) and brick waste (BP) activated were tested and recorded after curing for 3, 7, 28 and 365 days. Five samples of pastes were mixed in proportions represented by: 100% GP (GP), 100% GGP (GGP), 100% BP (BP), 90% GP + 10% BP (GPB) and 90% GGP + 10% BP (GGPB). Various parameters considered in this study include sodium hydroxide concentrations (10 mol/l); 0.4 as alkaline liquid to binder ratio; 2.5 as sodium silicate to sodium hydroxide ratio and cured at 60℃ for 24 hours. Experimental results revealed that the addition of 10% of BP resulted in an increased strength performance of geopolymer paste especially with GGPB compared to GGP in 365 days. In addition, the 10% amount of BP increases the absorption and shrinkage rate of geopolymer pastes (GPB and GGPB) by reducing the setting time. SEM results revealed that the addition of BP and GP resulted in a dense structure.

Keywords

Acknowledgement

The authors thank the Geomaterial Development Laboratory of M'sila University, pedagogical laboratory for civil engineering of Bordj Bou-Arreridj University, also, to the director of the Emerging Materials Research Unit of Setif University and Directorate of Scientific Research and Technological Development (DGRSDT, MESRS, Algeria), all respect and appreciation is directed to Analytical laboratory in organic, inorganic and materials chemistry (French, Paris) for the assistance and support to complete this paper.

References

  1. Abdel Salam, N.F., Abadir, M.F. and Amin, S.K. (2022), "Preparation of geo-polymer bricks from alum waste", Egypt. J. Chem., 65(2), 71-80. https://doi.org/10.21608/EJCHEM.2021.80201.3974 
  2. ASTM C191-18a (2018), Standard Test Methods for Time of Setting Hydraulic Cement by Vicat Needle; ASTM International: West Conshohocken, PA, USA. https://standards.globalspec.com/std/13067680/ASTM%20C191-18a 
  3. ASTM C305-14 (2014), Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency; ASTM International: West Conshohocken, PA, USA. https://webstore.ansi.org/standards/astm/astmc30514 
  4. ASTM C 642-97 (2017), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. https://www.astm.org/c0642-97.html 
  5. B.N, MKCC5207 (2017), Certificate of analysis: sodium silicate solution (Na2O7Si3), SIGMA-ALDRICH, USA, 2017. 
  6. Chen, T.A. (2021), "Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions", Crystals, 11(5), 502. https://doi.org/10.3390/cryst11050502 
  7. Christiansen, M.U. (2019), "Effects of Composition and Activator Type on Glass-Based Geopolymers", ACI Mater. J., 116(5). https://doi.org/10.14359/51716979 
  8. Gao, X., Yu, Q., Li, X.S. and Yuan, Y. (2020), "Assessing the modification efficiency of waste glass powder in hydraulic construction materials", Constr. Build. Mater., 263, 0950-0618. https://doi.org/10.1016/j.conbuildmat.2020.120111 
  9. Huseien, G.F., Mirzaa, J., Ismaila, M., Hussina, M.W. and Ariffina, M.A.M. (2016a), "Potential use coconut milk as alternative to alkali solution for geopolymer production", J. Teknol., 78, 133-139. https://doi.org/10.11113/.v78.8316 
  10. Huseien, G.F., Mirza, J., Ismail, M., Ghoshal, S.K. and Ariffin, M.A.M. (2016b), "Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar", Ain Shams Eng. J., 9, 1557-1566. https://doi.org/10.1016/j.asej.2016.11.011 
  11. Huseien, G.F., Ismail, M., Khalid, N.H.A., Hussin, M.W. and Mirza, J. (2018a), "Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity", Alex. Eng. J., 57, 3375-3386. https://doi.org/10.1016/j.aej.2018.07.011 
  12. Huseien, G., Ismail, M., Tahir, M., Mirza, J., Hussein, A., Khalid, N. and Sarbini, N. (2018b), "Effect of binder to fine aggregate content on performance of sustainable alkali activated mortars incorporating solid waste materials", Chem. Eng., 63, 667-672. https://doi.org/10.3303/CET1863112 
  13. Hwang, C.L., Yehualaw, M.D., Vo, D.H., Huynh, T.P. and Largo, A. (2019), "Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature", Constr. Build. Mater., 223, 657-667. https://doi.org/10.1016/j.conbuildmat.2019.07.062 
  14. Jani, Y. and Hogland, W. (2014), "Waste glass in the production of cement and concrete-A review", J. Environ. Chem. Eng., 2, 1767-1775. https://doi.org/10.1016/j.jece.2014.03.016 
  15. Jindal, B.B. (2018), "Feasibility study of ambient cured geopolymer concrete-A review", Adv. Concrete Constr., Int. J., 6(4), 387-405. https://doi.org/10.12989/acc.2018.6.4.387 
  16. Kanagaraj, G. and Mahalingan, A. (2011), "Designing energy efficient commercial building. A Systems frame work", Energy Build., 43(9), 2329-2343. https://doi.org/10.1016/j.enbuild.2011.05.023 
  17. Khale, D. and Chaudhary, R. (2007), "Mechanism of geopolymerization and factors influencing its development: A review", J. Mater. Sci., 42, 729-746. https://doi.org/10.1007/s10853-006-0401-4 
  18. Khan, M.N.N., Kuri, J.C. and Sarker, P.K. (2022), "Sustainable use of waste glass in alkali activated materials against H2SO4 and HCl acid attacks", Cleaner Eng. Technol., 6, 100354. https://doi.org/10.1016/j.clet.2021.100354 
  19. Kioupis, D., Skaropoulou, A., Tsivilis, S. and Kakali, G. (2020), "Valorization of brick and glass CDWs for the development of geopolymers containing more than 80% of wastes", Minerals, 10(8), 672. https://doi.org/10.3390/min10080672 
  20. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G. and Galetakis, M. (2015), "Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers", Adv. Powder Technol., 26(2), 368-376. https://doi.org/10.1016/j.apt.2014.11.012 
  21. Liu, G., Florea, M.V.A. and Brouwers, H.J.H. (2019a), "Waste glass as binder in alkali activated slag-fly ash mortars", Mater. Struct., 52(5), 1-12. https://doi.org/10.1617/s11527-019-1404-3 
  22. Liu, Y., Shi, C., Zhang, Z. and Li, N. (2019b), "An overview on the reuse of waste glasses in alkali-activated materials", Resour. Conserv. Recycl., 144, 297-309. https://doi.org/10.1016/j.resconrec.2019.02.007 
  23. Lloyd, R.R. (2009), "Accelerated ageing of geopolymers", In: J.L. Provis, J.S.J. van Deventer (Eds.), Geopolymers: Structures, Processing, Properties and Industrial Applications, Wood head Publishing Ltd., Cambridge, UK, pp. 139-166. https://doi.org/10.1533/9781845696382.2.139 
  24. Mawlod, A.O. (2020), "Performance of one-part alkali activated recycled ceramic tile/fine soil binders", Adv. Concrete Constr., Int. J., 10(4), 311-317. https://doi.org/10.12989/acc.2020.10.4.311 
  25. Luhar, S., Cheng, T.W., Nicolaides, D., Luhar, I., Panias, D. and Sakkas, K. (2019), "Valorisation of glass waste for development of Geopolymer composites-Mechanical properties and rheological characteristics: A review", Constr. Build. Mater., 220, 547-564. https://doi.org/10.1016/j.conbuildmat.2019.06.041 
  26. NF EN 12390-16, Essais pour beton durci - Partie 16 : determination du retrait du beton. https://www.boutique.afnor.org/fr-fr/norme/nf-en1239016/essais-pour-beton-durci-partie-16-determination-duretrait-du-beton/fa191174/84016 
  27. NF-EN 196-1, Methodes d'essais des ciments - Partie 1 : determination des resistances. https://www.boutique.afnor.org/fr-fr/norme/nf-en1961/methodes-dessais-des-ciments-determination-desresistances-mecaniques/fa020279/77168 
  28. Pouhet, R. (2015), "Formulation and Durability of Metakaolin Based Geopolymers", Ph.D. Thesis; Universite de Toulouse, Universite Toulouse III-Paul Sabatier, Toulouse, France.
  29. Provis, J.L. (2014), "Geopolymers and other alkali activated materials: why, how, and what?", Mater. Struct., 47(1), 11-25. https://doi.org/10.1617/s11527-013-0211-5 
  30. Rahmouni, Z.E.A., Tebbal, N. and Omri, I.Y. (2020), "Effect of curing temperature in the alkali-activated brick waste and glass powder mortar and their influence of mechanical resistances", KnE Eng., 49-61. https://doi.org/10.18502/keg.v5i4.6794 
  31. Reig, L., Tashima, M.M., Borrachero, M.V., Monzo, J., Cheeseman, C.R. and Paya, J. (2013), "Properties and microstructure of alkali-activated red clay brick waste", Constr. Build. Mater., 43, 98-106. https://doi.org/10.1016/j.conbuildmat.2013.01.031 
  32. Report on solid waste management in Algeria, April (2014), D-waste, consultant for Sweep-Net in cooperation with GiZ. https://www.retechgermany.net/fileadmin/retech/05_mediathek/laenderinformationen/Algerien_RA_ANG_WEB_0_Laenderprofile_sweep_net.pdf 
  33. Robayo, R.A., Mulford, A., Munera, J. and de Gutierrez, R.M. (2016), "Alternative cements based on alkali-activated red clay brick waste", Constr. Build. Mater., 128, 163-169. https://doi.org/10.1016/j.conbuildmat.2016.10.023 
  34. Samadi, M., Shah, K.W., Huseien, G.F. and Lim, N.H.A.S. (2020), "Influence of glass silica waste nano powder on the mechanical and microstructure properties of alkali-activated mortars", Nanomaterials, 10(2), 324. https://doi.org/10.3390/nano10020324 
  35. Samarakoon, M.H., Ranjith, P.G. and De Silva, V.R.S. (2020), "Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization", Constr. Build. Mater., 241, 0950-0618. https://doi.org/10.1016/j.conbuildmat.2020.118013 
  36. Shi, C. and Zheng, K. (2007), "A review on the use of waste glasses in the production of cement and concrete", Resour. Conserv. Recycl., 52, 234-247. https://doi.org/10.1016/j.resconrec.2007.01.013 
  37. Shoaei, P., Ameri, F., Musaeei, H.R., Ghasemi, T. and Cheah, C.B. (2020), "Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study", Constr. Build. Mater., 251, 118991. https://doi.org/10.1016/j.conbuildmat.2020.118991 
  38. Sun, Z., Cui, H., An, H., Tao, D., Xu, Y., Zhai, J. and Li, Q. (2013), "Synthesis and thermal behavior of geopolymer-type material from waste ceramic", Constr. Build. Mater., 49, 281-287. https://doi.org/10.1016/j.conbuildmat.2013.08.063 
  39. Sun, Z., Lin, X. and Vollpracht, A. (2018), "Pervious concrete made of alkali activated slag and geopolymers", Constr. Build. Mater., 189, 797-803. https://doi.org/10.1016/j.conbuildmat.2018.09.067 
  40. Tebbal, N. and Rahmouni, Z.E.A. (2019), "Recycling of brick waste for geopolymer mortar using full factorial design approach", In: The Eurasia Proceedings of Science Technology Engineering and Mathematics, 7, 44-47. http://www.epstem.net/en/pub/issue/50288/652619 
  41. Tebbal, N., Maza, M. and Rahmouni, Z.E.A. (2022), "Use of a full Factorial Design to study the relationship between water absorption and porosity of GP and BW Mortar activated", Adv. Civil Eng., 2022(1), 2016157. https://doi.org/10.1155/2022/2016157 
  42. Thormark, C. (2001), "Conservation of energy and natural resources by recycling building waste", Resour. Conserv. Recycl., 33, 113-130. https://doi.org/10.1016/S0921-3449(01)00078-7 
  43. Tiffo, E., Elimbi, A., Manga, J.D. and Tchamba, A.B. (2015), "Red ceramics produced from mixtures of Kaolinite clay and waste glass", Brazil. J. Sci. Technol., 4, 113. https://doi.org/10.1186/s40552-015-0009-9 
  44. Toniolo, N. and Boccaccini, A.R (2017), "Fly ash-based geopolymers containing added silicate waste, A review", Ceram. Int., 43, 14545-14551. https://doi.org/10.1016/j.ceramint.2017.07.221 
  45. Torres-Carrasco, M., Palomo, J.G. and Puertas, F. (2014), "Sodium silicate solutions from dissolution of glasswastes", Statistical analysis. Materiales de Construccion, 64(314), e014-e014. http://dx.doi.org/10.3989/mc.2014.05213 
  46. Van Jaarsveld, J.G.S., Van Deventer, J.S. and Lukey, G.C. (2002), "The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers", Chem. Eng. J., 89, 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6 
  47. Vossberg, C., Mason-Jones, K. and Cohen, B. (2014), "An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa", Resour. Conserv. Recycl., 88, 39-49. https://doi.org/10.1016/j.resconrec.2014.04.009 
  48. Yunsheng, Z., Wei, S., Qianli, C. and Lin, C. (2007), "Synthesis and heavy metal immobilization behavior of slag based geopolymer", J. Hazard. Mater., 143, 206-213. https://doi.org/10.1016/j.jhazmat.2006.09.033 
  49. Zhang, Z., Wang, H., Provis, J.L., Bullen, F., Reid, A. and Zhu, Y. (2012), "Quantitative kinetic and structural analysis of geopolymers. Part1, The activation of metakaolin with sodium hydroxide", Thermochim. Acta, 539, 23-33. https://doi.org/10.1016/j.tca.2012.03.021 
  50. Zhang, M., El-Korchi, T., Zhang, G., Liang, J. and Tao, M. (2014b), "Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mude fly ash based geopolymers", Fuel, 134, 315-325. https://doi.org/10.1016/j.fuel.2014.05.058