Acknowledgement
The authors thank the Geomaterial Development Laboratory of M'sila University, pedagogical laboratory for civil engineering of Bordj Bou-Arreridj University, also, to the director of the Emerging Materials Research Unit of Setif University and Directorate of Scientific Research and Technological Development (DGRSDT, MESRS, Algeria), all respect and appreciation is directed to Analytical laboratory in organic, inorganic and materials chemistry (French, Paris) for the assistance and support to complete this paper.
References
- Abdel Salam, N.F., Abadir, M.F. and Amin, S.K. (2022), "Preparation of geo-polymer bricks from alum waste", Egypt. J. Chem., 65(2), 71-80. https://doi.org/10.21608/EJCHEM.2021.80201.3974
- ASTM C191-18a (2018), Standard Test Methods for Time of Setting Hydraulic Cement by Vicat Needle; ASTM International: West Conshohocken, PA, USA. https://standards.globalspec.com/std/13067680/ASTM%20C191-18a
- ASTM C305-14 (2014), Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency; ASTM International: West Conshohocken, PA, USA. https://webstore.ansi.org/standards/astm/astmc30514
- ASTM C 642-97 (2017), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. https://www.astm.org/c0642-97.html
- B.N, MKCC5207 (2017), Certificate of analysis: sodium silicate solution (Na2O7Si3), SIGMA-ALDRICH, USA, 2017.
- Chen, T.A. (2021), "Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions", Crystals, 11(5), 502. https://doi.org/10.3390/cryst11050502
- Christiansen, M.U. (2019), "Effects of Composition and Activator Type on Glass-Based Geopolymers", ACI Mater. J., 116(5). https://doi.org/10.14359/51716979
- Gao, X., Yu, Q., Li, X.S. and Yuan, Y. (2020), "Assessing the modification efficiency of waste glass powder in hydraulic construction materials", Constr. Build. Mater., 263, 0950-0618. https://doi.org/10.1016/j.conbuildmat.2020.120111
- Huseien, G.F., Mirzaa, J., Ismaila, M., Hussina, M.W. and Ariffina, M.A.M. (2016a), "Potential use coconut milk as alternative to alkali solution for geopolymer production", J. Teknol., 78, 133-139. https://doi.org/10.11113/.v78.8316
- Huseien, G.F., Mirza, J., Ismail, M., Ghoshal, S.K. and Ariffin, M.A.M. (2016b), "Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar", Ain Shams Eng. J., 9, 1557-1566. https://doi.org/10.1016/j.asej.2016.11.011
- Huseien, G.F., Ismail, M., Khalid, N.H.A., Hussin, M.W. and Mirza, J. (2018a), "Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity", Alex. Eng. J., 57, 3375-3386. https://doi.org/10.1016/j.aej.2018.07.011
- Huseien, G., Ismail, M., Tahir, M., Mirza, J., Hussein, A., Khalid, N. and Sarbini, N. (2018b), "Effect of binder to fine aggregate content on performance of sustainable alkali activated mortars incorporating solid waste materials", Chem. Eng., 63, 667-672. https://doi.org/10.3303/CET1863112
- Hwang, C.L., Yehualaw, M.D., Vo, D.H., Huynh, T.P. and Largo, A. (2019), "Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature", Constr. Build. Mater., 223, 657-667. https://doi.org/10.1016/j.conbuildmat.2019.07.062
- Jani, Y. and Hogland, W. (2014), "Waste glass in the production of cement and concrete-A review", J. Environ. Chem. Eng., 2, 1767-1775. https://doi.org/10.1016/j.jece.2014.03.016
- Jindal, B.B. (2018), "Feasibility study of ambient cured geopolymer concrete-A review", Adv. Concrete Constr., Int. J., 6(4), 387-405. https://doi.org/10.12989/acc.2018.6.4.387
- Kanagaraj, G. and Mahalingan, A. (2011), "Designing energy efficient commercial building. A Systems frame work", Energy Build., 43(9), 2329-2343. https://doi.org/10.1016/j.enbuild.2011.05.023
- Khale, D. and Chaudhary, R. (2007), "Mechanism of geopolymerization and factors influencing its development: A review", J. Mater. Sci., 42, 729-746. https://doi.org/10.1007/s10853-006-0401-4
- Khan, M.N.N., Kuri, J.C. and Sarker, P.K. (2022), "Sustainable use of waste glass in alkali activated materials against H2SO4 and HCl acid attacks", Cleaner Eng. Technol., 6, 100354. https://doi.org/10.1016/j.clet.2021.100354
- Kioupis, D., Skaropoulou, A., Tsivilis, S. and Kakali, G. (2020), "Valorization of brick and glass CDWs for the development of geopolymers containing more than 80% of wastes", Minerals, 10(8), 672. https://doi.org/10.3390/min10080672
- Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G. and Galetakis, M. (2015), "Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers", Adv. Powder Technol., 26(2), 368-376. https://doi.org/10.1016/j.apt.2014.11.012
- Liu, G., Florea, M.V.A. and Brouwers, H.J.H. (2019a), "Waste glass as binder in alkali activated slag-fly ash mortars", Mater. Struct., 52(5), 1-12. https://doi.org/10.1617/s11527-019-1404-3
- Liu, Y., Shi, C., Zhang, Z. and Li, N. (2019b), "An overview on the reuse of waste glasses in alkali-activated materials", Resour. Conserv. Recycl., 144, 297-309. https://doi.org/10.1016/j.resconrec.2019.02.007
- Lloyd, R.R. (2009), "Accelerated ageing of geopolymers", In: J.L. Provis, J.S.J. van Deventer (Eds.), Geopolymers: Structures, Processing, Properties and Industrial Applications, Wood head Publishing Ltd., Cambridge, UK, pp. 139-166. https://doi.org/10.1533/9781845696382.2.139
- Mawlod, A.O. (2020), "Performance of one-part alkali activated recycled ceramic tile/fine soil binders", Adv. Concrete Constr., Int. J., 10(4), 311-317. https://doi.org/10.12989/acc.2020.10.4.311
- Luhar, S., Cheng, T.W., Nicolaides, D., Luhar, I., Panias, D. and Sakkas, K. (2019), "Valorisation of glass waste for development of Geopolymer composites-Mechanical properties and rheological characteristics: A review", Constr. Build. Mater., 220, 547-564. https://doi.org/10.1016/j.conbuildmat.2019.06.041
- NF EN 12390-16, Essais pour beton durci - Partie 16 : determination du retrait du beton. https://www.boutique.afnor.org/fr-fr/norme/nf-en1239016/essais-pour-beton-durci-partie-16-determination-duretrait-du-beton/fa191174/84016
- NF-EN 196-1, Methodes d'essais des ciments - Partie 1 : determination des resistances. https://www.boutique.afnor.org/fr-fr/norme/nf-en1961/methodes-dessais-des-ciments-determination-desresistances-mecaniques/fa020279/77168
- Pouhet, R. (2015), "Formulation and Durability of Metakaolin Based Geopolymers", Ph.D. Thesis; Universite de Toulouse, Universite Toulouse III-Paul Sabatier, Toulouse, France.
- Provis, J.L. (2014), "Geopolymers and other alkali activated materials: why, how, and what?", Mater. Struct., 47(1), 11-25. https://doi.org/10.1617/s11527-013-0211-5
- Rahmouni, Z.E.A., Tebbal, N. and Omri, I.Y. (2020), "Effect of curing temperature in the alkali-activated brick waste and glass powder mortar and their influence of mechanical resistances", KnE Eng., 49-61. https://doi.org/10.18502/keg.v5i4.6794
- Reig, L., Tashima, M.M., Borrachero, M.V., Monzo, J., Cheeseman, C.R. and Paya, J. (2013), "Properties and microstructure of alkali-activated red clay brick waste", Constr. Build. Mater., 43, 98-106. https://doi.org/10.1016/j.conbuildmat.2013.01.031
- Report on solid waste management in Algeria, April (2014), D-waste, consultant for Sweep-Net in cooperation with GiZ. https://www.retechgermany.net/fileadmin/retech/05_mediathek/laenderinformationen/Algerien_RA_ANG_WEB_0_Laenderprofile_sweep_net.pdf
- Robayo, R.A., Mulford, A., Munera, J. and de Gutierrez, R.M. (2016), "Alternative cements based on alkali-activated red clay brick waste", Constr. Build. Mater., 128, 163-169. https://doi.org/10.1016/j.conbuildmat.2016.10.023
- Samadi, M., Shah, K.W., Huseien, G.F. and Lim, N.H.A.S. (2020), "Influence of glass silica waste nano powder on the mechanical and microstructure properties of alkali-activated mortars", Nanomaterials, 10(2), 324. https://doi.org/10.3390/nano10020324
- Samarakoon, M.H., Ranjith, P.G. and De Silva, V.R.S. (2020), "Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization", Constr. Build. Mater., 241, 0950-0618. https://doi.org/10.1016/j.conbuildmat.2020.118013
- Shi, C. and Zheng, K. (2007), "A review on the use of waste glasses in the production of cement and concrete", Resour. Conserv. Recycl., 52, 234-247. https://doi.org/10.1016/j.resconrec.2007.01.013
- Shoaei, P., Ameri, F., Musaeei, H.R., Ghasemi, T. and Cheah, C.B. (2020), "Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study", Constr. Build. Mater., 251, 118991. https://doi.org/10.1016/j.conbuildmat.2020.118991
- Sun, Z., Cui, H., An, H., Tao, D., Xu, Y., Zhai, J. and Li, Q. (2013), "Synthesis and thermal behavior of geopolymer-type material from waste ceramic", Constr. Build. Mater., 49, 281-287. https://doi.org/10.1016/j.conbuildmat.2013.08.063
- Sun, Z., Lin, X. and Vollpracht, A. (2018), "Pervious concrete made of alkali activated slag and geopolymers", Constr. Build. Mater., 189, 797-803. https://doi.org/10.1016/j.conbuildmat.2018.09.067
- Tebbal, N. and Rahmouni, Z.E.A. (2019), "Recycling of brick waste for geopolymer mortar using full factorial design approach", In: The Eurasia Proceedings of Science Technology Engineering and Mathematics, 7, 44-47. http://www.epstem.net/en/pub/issue/50288/652619
- Tebbal, N., Maza, M. and Rahmouni, Z.E.A. (2022), "Use of a full Factorial Design to study the relationship between water absorption and porosity of GP and BW Mortar activated", Adv. Civil Eng., 2022(1), 2016157. https://doi.org/10.1155/2022/2016157
- Thormark, C. (2001), "Conservation of energy and natural resources by recycling building waste", Resour. Conserv. Recycl., 33, 113-130. https://doi.org/10.1016/S0921-3449(01)00078-7
- Tiffo, E., Elimbi, A., Manga, J.D. and Tchamba, A.B. (2015), "Red ceramics produced from mixtures of Kaolinite clay and waste glass", Brazil. J. Sci. Technol., 4, 113. https://doi.org/10.1186/s40552-015-0009-9
- Toniolo, N. and Boccaccini, A.R (2017), "Fly ash-based geopolymers containing added silicate waste, A review", Ceram. Int., 43, 14545-14551. https://doi.org/10.1016/j.ceramint.2017.07.221
- Torres-Carrasco, M., Palomo, J.G. and Puertas, F. (2014), "Sodium silicate solutions from dissolution of glasswastes", Statistical analysis. Materiales de Construccion, 64(314), e014-e014. http://dx.doi.org/10.3989/mc.2014.05213
- Van Jaarsveld, J.G.S., Van Deventer, J.S. and Lukey, G.C. (2002), "The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers", Chem. Eng. J., 89, 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6
- Vossberg, C., Mason-Jones, K. and Cohen, B. (2014), "An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa", Resour. Conserv. Recycl., 88, 39-49. https://doi.org/10.1016/j.resconrec.2014.04.009
- Yunsheng, Z., Wei, S., Qianli, C. and Lin, C. (2007), "Synthesis and heavy metal immobilization behavior of slag based geopolymer", J. Hazard. Mater., 143, 206-213. https://doi.org/10.1016/j.jhazmat.2006.09.033
- Zhang, Z., Wang, H., Provis, J.L., Bullen, F., Reid, A. and Zhu, Y. (2012), "Quantitative kinetic and structural analysis of geopolymers. Part1, The activation of metakaolin with sodium hydroxide", Thermochim. Acta, 539, 23-33. https://doi.org/10.1016/j.tca.2012.03.021
- Zhang, M., El-Korchi, T., Zhang, G., Liang, J. and Tao, M. (2014b), "Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mude fly ash based geopolymers", Fuel, 134, 315-325. https://doi.org/10.1016/j.fuel.2014.05.058