DOI QR코드

DOI QR Code

Vibration measurement of deformed structure of composite material: Target-free vision-based approach

  • Rana Muhammad Akram Muntazir (Department of Mathematics, Lahore Leads University) ;
  • Abdur Rauf (Department of Chemistry, University of Sahiwal) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Ikram Ahmad (Department of Chemistry, University of Sahiwal) ;
  • Hamdi Ayed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Lubna Rasool (Department of Chemistry, University of Sahiwal) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University) ;
  • Bazal Fatima (Department of Chemistry, University of Sahiwal) ;
  • Sehar Asghar (Department of Mathematics, Government College University Faisalabad) ;
  • Essam Mohammed Banoqitah (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2023.08.06
  • 심사 : 2024.07.17
  • 발행 : 2024.03.25

초록

The interaction of short range zigzag single walled carbon nanotubes CNTs based on modified elasticity model is studied in this paper. The numerical accurate results are presented. Through this model the vibrational frequency of zigzag (5, 0), (12, 0) single-walled CNTs with certain end conditions are estimated. The natural frequencies of single walled carbon nanotubes are obtained by elasticity model. It is considered for various estimation of height-to-diameter ratio of zigzag tube. This simulation is performed to quantify small scale effects. Moreover, the natural frequencies increase by increasing the height-to-diameter ratio. These frequencies are very sensitive with low height-to-diameter ratio. The feasibility and effective use of present model is explained by comparison of outputs of earlier investigations.

키워드

과제정보

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/95/45.

참고문헌

  1. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392 
  2. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277 
  3. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585 
  4. Al-Shamma, F., Majeed, W.I. and Ali, H.A.K. (2018), "Experimental responses of MWCNTs reinforced cross-ply thin composite shells under transverse impact and thermal loads", J. Eng. Sustain. Develop., 22(3), 34-49.  https://doi.org/10.31272/jeasd.2018.3.4
  5. Arghavan, S. and Singh, A.V. (2011), "On the vibrations of single-walled carbon nanotubes", J. Sound Vib., 330(13), 3102-3122. https://doi.org/10.1016/j.jsv.2011.01.032 
  6. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021 
  7. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029 
  8. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147 
  9. Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085 
  10. Cigeroglu, E. and Samandari, H. (2014), "Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method", Physica E: Low-dimens. Syst. Nanostruct., 64, 95-105. https://doi.org/10.1016/j.physe.2014.07.010 
  11. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231, 2565-2587. https://doi.org/10.1007/s00707-020-02653-3 
  12. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065 
  13. Demir, C., Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique", Mathe. Computat. Applicat., 15(1), 57-65. https://doi.org/10.3390/mca15010057 
  14. Ebrahimi, R. (2022), "Chaotic vibrations of carbon nanotubes subjected to a traversing force considering nonlocal elasticity theory", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 236(1-2), 31-40. https://doi.org/10.1177/2397791421106330 
  15. Ebrahimi F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057
  16. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concrete Constr., Int. J., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481 
  17. Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2015), "Application of electrostatically actuated carbon nanotubes in nanofluidic and bio-nanofluidic sensors and actuators", Measurement, 73, 127-136. https://doi.org/10.1016/j.measurement.2015.05.009 
  18. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203 
  19. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756. https://doi.org/10.1016/j.jsv.2006.02.024 
  20. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269 
  21. Ghasemi, S.E. and Gouran, S. (2022), "Nonlinear analysis on flow-induced vibration of single-walled carbon nanotubes employing analytical methods", Int. J. Struct. Stabil. Dyn., 2250115. https://doi.org/10.1142/S0219455422501152 
  22. He, H., Shi, J., Yu, S., Yang, J., Xu, K., He, C. and Li, X. (2024), "Exploring green and efficient zero-dimensional carbon-based inhibitors for carbon steel: From performance to mechanism", Constr. Build. Mater., 411, 134334. https://doi.org/10.1016/j.conbuildmat.2023.134334 
  23. Hernandez, E., Goze, C., Bemier, P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502 
  24. Hou, X., Xin, L., Fu, Y., Na, Z., Gao, G., Liu, Y., Xu, Q., Zhao, P., Yan, G., Su, Y. and Cao, K. (2023a), "A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception", Nano Energy, 118, 109034. https://doi.org/10.1016/j.nanoen.2023.109034 
  25. Hou, X., Zhang, L., Su, Y., Gao, G., Liu, Y., Na, Z., Xu, Q., Ding, T., Xiao, L., Li, L. and Chen, T. (2023b), "A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification", Nano Energy, 105, 108013. https://doi.org/10.1016/j.nanoen.2022.10801 
  26. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010 
  27. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.000272 
  28. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022a), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479 
  29. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022b), "Experimental study on cyclic performance of steelhollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499 
  30. Huang, X., Chang, L., Zhao, H. and Cai, Z. (2022c), "Study on craniocerebral dynamics response and helmet protective performance under the blast waves", Mater. Des., 224, 111408. https://doi.org/10.1016/j.matdes.2022.111408 
  31. Huang, H., Yao, Y., Zhang, W. and Zhou, L. (2023), "A push-out test on partially encased composite column with different positions of shear studs", Eng. Struct., 289, 116343. https://doi.org/10.1016/j.engstruct.2023.116343 
  32. Jena, S.K., Chakraverty, S., Malikan, M. and Mohammad-Sedighi, H. (2020), "Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model", Int. J. Appl. Mech., 12(05), 2050054. https://doi.org/10.1142/S1758825120500544 
  33. Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26. 
  34. Jweeg, M.J. and Alazzawy, W.I. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng., 16(02), 5170-5184.  https://doi.org/10.31026/j.eng.2010.02.29
  35. Li, F., Gan, J., Zhang, L., Tan, H., Li, E. and Li, B. (2024a), "Enhancing impact resistance of hybrid structures designed with triply periodic minimal surfaces", Compos. Sci. Technol., 245, 110365. https://doi.org/10.1016/j.compscitech.2023.110365 
  36. Li, J., Wang, Z., Zhang, S., Lin, Y., Jiang, L. and Tan, J. (2024b), "Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process", Robot. Comput.-Integr. Manuf., 85, 102647. https://doi.org/10.1016/j.rcim.2023.102647 
  37. Lu, D., Ma, C., Du Xiuli, Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2), 04016058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729 
  38. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z. and Du, X. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng. Mech., 149(12), 04023102. https://doi.org/10.1061/JENMDT.EMENG-7206 
  39. Malikan, M. and Eremeyev, V.A. (2020), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method", Mater. Res. Express, 7(2), 025005. https://doi.org/10.1088/2053-1591/ab691c 
  40. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. 10.12989/ACC.2017.5.5.539 
  41. Miyashiro, D., Hamano, R., Taira, H. and Umemura, K. (2021), "Analysis of vibration behavior in single strand DNA-wrapped single-walled carbon nanotubes adhered to lipid membranes", Forces Mech., 2, 100008. https://doi.org/10.1016/j.finmec.2020.100008 
  42. Naidu, S.S., Varun, C. and Satyanarayana, G. (2012), "Fundamental natural frequencies of double-walled carbon nanotubes", Int. J. Eng. Res. Technol. (IJERT), 1(10). 
  43. Natsuki, T., Ni, Q.Q. and Endo, M. (2008), "Analysis of the vibration characteristics of double-walled carbon nanotubes", Carbon, 46(12), 1570-1573. https://doi.org/10.1016/j.carbon.2008.06.058 
  44. Natsuki, T., Lei, X.W., Ni, Q.Q. and Endo, M. (2010), "Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium", Phys. Lett. A, 374(26), 2670-2674. https://doi.org/10.1016/j.physleta.2010.04.040 
  45. Ponnusamy, P. and Amuthalakshmi, A. (2013), "Vibration analysis of a viscous fluid conveying double walled carbon nanotube", In: International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, pp. 231-236. https://doi.org/10.1109/ICANMEET.2013.6609285. 
  46. Pourasghar, A., Yang, W., Brigham, J. and Chen, Z. (2021), "Nonlocal thermoelasticity: Transient heat conduction effects on the linear and nonlinear vibration of single-walled carbon nanotubes", Mech. Based Des. Struct. Mach., 1-17. https://doi.org/10.1080/15397734.2021.1985516 
  47. Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129 
  48. Ru, C.Q. (2004), "Elastic models for carbon nanotubes", In: Encyclop. Nanosci. Nanotechnol., 2(744), 731-744. https://doi.org/10.1166/000000004323034885 
  49. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043 
  50. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab-initio structural, elastic, and Vibrational Properties of Carbon Nanotubes", Phys. Rev. B, 59, 12678-2688. http://dx.doi.org/10.1103/PhysRevB.59.12678 
  51. Shakouri, A., Lin, R.M. and Ng, T.Y. (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9). https://doi.org/10.1063/1.3239993 
  52. Shi, Y., Hou, X., Na, Z., Zhou, J., Yu, N., Liu, S., Xin, L., Gao, G. and Liu, Y. (2023), "Bio-inspired attachment mechanism of dynastes Hercules: Vertical climbing for on-orbit assembly legged robots", J. Bionic Eng., 21(1), 137-148. https://doi.org/10.1007/s42235-023-00423-0 
  53. Shu, X., Li, J. and Shen, M. (2022), "A coupled 2D RBSM-Voronoi model for simulating fracture behaviors of plain concrete components", Adv. Concrete Constr., Int. J., 14(6), 391-400. https://doi.org/10.12989/acc.2022.14.6.391 
  54. Soldano, C. (2015), "Hybrid metal-based carbon nanotubes: Novel platform for multifunctional applications", Progress Mater. Sci., 69, 183-212. https://doi.org/10.1016/j.pmatsci.2014.11.001 
  55. Sosa, E.D., Darlington, T.K., Hanos, B.A. and O'Rourke, M.J.E. (2014), "Multifunctional thermally remendable nanocomposites", J. Compos., Article ID 705687. http://dx.doi.org/10.1155/2014/705687 
  56. Su, F.Q., He, X.L., Dai, M.J., Yang, J.N., Hamanaka, A., Yu, Y.H., Li, W. and Li, J.Y. (2023), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309 
  57. Tian, R., Wang, M., Zhang, Y., Jing, X. and Zhang, X. (2024), "A concave X-shaped structure supported by variable pitch springs for low-frequency vibration isolation", Mech. Syst. Signal Process., 218, 111587. https://doi.org/10.1016/j.ymssp.2024.111587 
  58. Tylikowski, A. (2008), "Instability of thermally induced vibrations of carbon nanotubes", Arch. Appl. Mech., 78, 49-60. https://doi.org/10.1007/s00419-007-0140-2 
  59. Tylikowski, A. (2012), "Instability of thermally induced vibrations of carbon nanotubes via nonlocal elasticity", J. Thermal Stress., 35(1-3), 281-289. https://doi.org/10.1080/01495739.2012.637831 
  60. Wang, B.L. and Wang, K.F. (2013), "Vibration analysis of embedded nanotubes using nonlocal continuum theory", Compos. Part B: Eng., 47, 96-101. https://doi.org/10.1016/j.compositesb.2012.10.043 
  61. Xiang, Y., Wang, Z., Zhang, S., Jiang, L., Lin, Y. and Tan, J. (2024), "Cross-sectional performance prediction of metal tubes bending with tangential variable boosting based on parameters-weight-adaptive CNN", Expert Syst. Applicat., 237, 121465. https://doi.org/10.1016/j.eswa.2023.121465 
  62. Xu, S., Jing, X., Zhu, P., Jin, H., Paik, K.W., He, P. and Zhang, S (2023), "Equilibrium phase diagram design and structural optimization of SAC/Sn-Pb composite structure solder joint for preferable stress distribution", Mater. Characteriz., 206, 113389. https://doi.org/10.1016/j.matchar.2023.113389 
  63. Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nano-mechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511 
  64. Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bemholc, J. (1997), "High strain rate fracture and C-chain unravelling in carbon nanotubes", Comput. Mater. Sci., 8(4), 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5 
  65. Yao, Y., Huang, H., Zhang, W., Ye, Y., Xin, L. and Liu, Y. (2022), "Seismic performance of steel-PEC spliced frame beam", J. Constr. Steel Res., 197, 107456. https://doi.org/10.1016/j.jcsr.2022.107456 
  66. Yao, Y., Zhou, L., Huang, H., Chen, Z. and Ye, Y. (2023), "Cyclic performance of novel composite beam-to-column connections with reduced beam section fuse elements", Structures, 50, 842-858. https://doi.org/10.1016/j.istruc.2023.02.054 
  67. Yoon, J. (2006), Elastic beam models for dynamics of multiwall carbon nanotubes. https://era.library.ualberta.ca/items/84b8965d-4877-4c63-881c3357eb27568f 
  68. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sci. Tech., 63(11), 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7 
  69. Zhang, C. (2023), "The active rotary inertia driver system for flutter vibration control of bridges and various promising applications", Sci. China Technolog. Sci., 66(2), 390-405. https://doi.org/10.1007/s11431-022-2228-0 
  70. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404 
  71. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Mathe. Mech., 1(1), 89-106. https://global-sci.org/intro/article_detail/aamm/210.html  https://doi.org/10.html
  72. Zhang, X., Hao, H., Tian, R., Xue, Q., Guan, H. and Yang, X. (2022), "Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption", Compos. Struct., 288, 115399. https://doi.org/10.1016/j.compstruct.2022.11539 
  73. Zhang, C., Duan, C. and Sun, L. (2024a), "Inter-Storey Isolation Versus Base Isolation Using Friction Pendulum Systems", Int. J. Struct. Stabil. Dyn., 24(02), 2450022. https://doi.org/10.1142/S0219455424500226 
  74. Zhang, W., Zheng, D., Huang, Y. and Kang, S. (2024b), "Experimental and simulative analysis of flexural performance in UHPC-RC hybrid beams", Constr. Build. Mater., 436, 136889. https://doi.org/10.1016/j.conbuildmat.2024.136889 
  75. Zhou, P., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Path planning with automatic seam extraction over point cloud models for robotic arc welding", IEEE Robot. Automat. Lett., 6(3), 5002-5009. https://doi.org/10.1109/LRA.2021.3070828 
  76. Zhou, X., Lu, D., Zhang, Y., Du, X. and Rabczuk, T. (2022), "An open-source unconstrained stress updating algorithm for the modified Cam-clay model", Comput. Methods Appl. Mech. Eng., 390, 114356. https://doi.org/10.1016/j.cma.2021.114356 
  77. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., AddaBedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.pdf