DOI QR코드

DOI QR Code

A Review of Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries: Challenges and Progress

  • Seul Ki Choi (Department of Hydrogen Energy, Dankook University) ;
  • Jaehun Han (Department of Energy Engineering, Dankook University) ;
  • Gi Jeong Kim (Department of Chemistry, Dankook University) ;
  • Yeon Hee Kim (Department of Chemistry, Dankook University) ;
  • Jaewon Choi (Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University) ;
  • MinHo Yang (Department of Hydrogen Energy, Dankook University)
  • Received : 2024.07.26
  • Accepted : 2024.08.19
  • Published : 2024.08.28

Abstract

All-solid-state lithium batteries (ASSLBs) are receiving attention as a prospective next-generation secondary battery technology that can reduce the risk of commercial lithium-ion batteries by replacing flammable organic liquid electrolytes with non-flammable solid electrolytes. The practical application of ASSLBs requires developing robust solid electrolytes that possess ionic conductivity at room temperature on a par with that of organic liquids. These solid electrolytes must also be thermally and chemically stable, as well as compatible with electrode materials. Inorganic solid electrolytes, including oxide and sulfide-based compounds, are being studied as promising future candidates for ASSLBs due to their higher ionic conductivity and thermal stability than polymer electrolytes. Here, we present the challenges currently facing the development of oxide and sulfide-based solid electrolytes, as well as the research efforts underway aiming to resolve these challenges.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2022R1C1C1006536 and RS-2023-00221237).

References

  1. Y. Nishi: J. Power Sources., 100 (2001) 101.
  2. L. Liu, J. Xu, S. Wang, F. Wu, H. Li and L. Chen: eTransportaion., 1 (2019) 100010.
  3. D. Cao, X. Sun, Y. Wang and H. Zhu: Energy Storage Mater., 48 (2022) 458.
  4. A. Manthiram, X. Yu and S. Wang: Nat. Rev., 2 (2017) 16103.
  5. J. Schnell, F. Tietz, C. Singer, A. Hofer, N. Billot and G. Reinhart: Energy Environ. Sci., 12 (2019) 1818.
  6. P. V. Wright: Br. Polymer J., 7 (1975) 319.
  7. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck and J. D. Robertson: Solid State Ion., 53-56 (1992) 647. https://doi.org/10.1016/0167-2738(92)90442-R
  8. D. Qian, B. Xu, H.-M. Cho, T. Hatsukade, K. J. Carroll and Y. S. Meng: Chem. Mater., 24 (2012) 2744.
  9. V. Siller, A. Morata, M. N. Eroles, R. Arenal, J. C. Gonzalez-Rosillo, J. M. Lopez del Amo and A Taramcon: J. Mater. Chem. A., 9 (2021) 17760.
  10. K. V. Kravchyk, D. T. Karabay and M. V. Kovalenko: Sci. Rep., 12 (2022) 1177.
  11. R. Wei, S. Chen, T. Gao and W. Liu: Nano Select., 2 (2021) 2256. https://doi.org/10.1002/nano.202100110
  12. K. H. Park, Q. Bai, D. H. Kim, D. Y. Oh, Y. Zhu, Y. Mo and Y. S. Jung: Adv. Energy Mater., 8 (2018) 1800035.
  13. O. Bohnke, J. Emery, A. Veron, J. L. Fourquet, J. Y. Buzare, P. Florian and D. Massiot: Solid State Ionics., 109 (1998) 25.
  14. A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya and Yu I. Gornikov: Izv. Akad. Nauk SSSR, Neorg. Mater., 23 (1987) 470.
  15. Y. Inaguma, C. Liquan, M. Itoh and T. Nakamura: Solid State Commun., 86 (1993) 689.
  16. S. Yan, C.-H. Yim, V. Pankov, M. Bauer, E. Baranova, A. Weck, A. Merati and Y. Abu-Lebdeh: Batteries., 7 (2021) 75.
  17. Z. Hu, J. Sheng, J. Chen, G. Sheng, Y. Li, X.-Z. Fu, L. Wang, R. Sun and C.-P. Wong: New J. Chem., 42 (2018) 9074.
  18. K. Liu, R. Zhang, J. Sun, M. Wu and T. Zhao: ACS Appl. Mater. Interfaces., 11 (2019) 46930.
  19. F. Tan, H. An, N. Li, J. Du and Z. Peng: Nanoscale., 13 (2021) 11518.
  20. W. Dong, Y. Zhang, J. Zhu, R. Lv, Z. Li, W. Wu, W. Li and J. Wang: J. Memb. Sci., 663 (2022) 121041.
  21. Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J. G. Zhang, Y. Wang and J. Liu: Adv. Funct. Mater., 23 (2013) 987.
  22. J. Zheng, M. Tang and Y. Y. Hu: Angew. Chem. Int. Ed., 55 (2016) 12538.
  23. J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai, Y. Li, B. Chen, J. Zhao, S. Dong, J. Ma, L. Yue, Z. Liu, X. Guo, G. Cui and L. Chen: J. Mater. Chem. A., 5 (2017) 4940.
  24. Y. Jin, K. Liu, J. Lang, D. Zhuo, Z. Huang, C. Wang, H. Wu and Y. Cui: Nat. Energy., 3 (2018) 732.
  25. X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin, L. Li, Y. Shen and C.-W. Nan: ACS Appl. Mater. Interfaces., 10 (2018) 24791.
  26. J. Narvaez-Semanate and A. Rodrigues: Solid State Ion., 181 (2010) 1197. https://doi.org/10.1016/j.ssi.2010.05.010
  27. W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram and J. B. Goodenough: J. Am. Chem. Soc., 138 (2016) 9385.
  28. S. Yu, A. Mertens, X. Gao, D.C. Gunduz, R. Schierholz, S. Benning, F. Hausen, J. Mertens, H. Kungl and H. Tempel: Adv. Funct. Mater. Lett., 9 (2016) 1650066.
  29. S. H. Siyal, M. Li, J.-L. Lan, Y. Yu and X. Yang: Appl. Surf. Sci., 494 (2019) 1119.
  30. J. Lee, Y. W. Lee, S. Shin, T. H. Shin and S. Lee: Inorg. Chem. Commun., 154 (2023) 110895.
  31. M. J. Palmer, S. Kalnaus, M.B. Dixit, A. S. Westover, K. B. Hatzell, N. J. Dudney and X. C. Chen: Energy Storage Mater., 26 (2020) 242. https://doi.org/10.1016/j.ensm.2019.12.031
  32. Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng, H. Zou, Y. Chen, W. Kuang, K. Ding, L. Chen, Y. Lan, Y. Cai and Q. Zheng: Energy Storage Mater., 47 (2022) 262.
  33. V. F. Kitaeva, E. V. Zharikov and I. L. Chistyi: Phys. Status Solidi A., 92 (1985) 475.
  34. V. Thangadurai, H. Kaack and W. Weppner: J. Am. Ceram. Soc., 86 (2003) 437.
  35. V. Thangadurai and W. Weppner: J. Power Sources., 142 (2005) 339.
  36. R. Murugan, V. Thangadurai and W. Weppner: Angew. Chem. Int. Ed., 46 (2007) 7778.
  37. P. Knauth: Solid State Ion., 180 (2009) 911. https://doi.org/10.1016/j.ssi.2009.03.022
  38. Y. Zhu, X. He and Y. Mo: ACS Appl. Mater. Interfaces., 7 (2015) 23685.
  39. J.-F. Wu, B.-W. Pu, D. Wang, S.-Q. Shi, N. Zhao, X. Guo and X. Guo: ACS Appl. Mater. Interfaces., 11 (2019) 898.
  40. A. A. Delluva, J. Kulberg-Savercool and A. Holewinski: Adv. Funct. Mater., 31 (2021) 2103716.
  41. F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen and L. Zhang: J. Phys. Chem. C., 122 (2018) 1963.
  42. J. Li, Z. Liu, W. Ma, H. Dong, K. Zhang and R. Wang: J. Power Sources., 412 (2019) 189.
  43. L. H. Abrha, T. T. Hagos, Y. Nikodimos, H. K. Bezabh, G. B. Berhe, T. M. Hagos, C.-J. Huang, W. A. Tegegne, S.-K. Jiang, H. H. Weldeyohannes, S.-H. Wu, W.-N. Su and B. J. Hwang: ACS Appl. Mater. Interfaces., 12 (2020) 25709.
  44. M. Jia, Z. Bi, C. Shi, N. Zhao and X. Guo: J. Power Sources., 486 (2021) 229363.
  45. L. Zhang, J. Yang, K. Jing, C. Li, Y. Gao, X. Wang and Q. Fang: ACS Appl. Mater. Interfaces., 12 (2020) 13836.
  46. B. Tao, C. Ren, H. Li, B. Liu, X. Jia, X. Dong, S. Zhang and H. Chang: Adv. Funct. Mater., 32 (2022) 2203551.
  47. Y. Deng, C. Eames, J. N. Chotard, F. Lalere, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier and M. S. Islam: J. Am. Chem. Soc., 137 (2015) 9136.
  48. R. Kanno and M. Murayama: J. Electrochem. Soc., 148 (2001) 742.
  49. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui: Nat. Mater., 10 (2011) 682.
  50. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba and R. Kanno: Nat. Energy., 1 (2016) 16030.
  51. Z. Zhang, S. Chen, J. Yang, J. Wang, L. Yao, X. Yao, P. Cui and X. Xu: ACS Appl. Mater. Interfaces., 10 (2018) 2556.
  52. A. Dawson and M. S. Islam: ACS Materials Lett., 4 (2022) 424. https://doi.org/10.1021/acsmaterialslett.1c00766
  53. M. Li, M. Kolek, J. E. Frerichs, W. Sun, X. Hou, M. R. Hansen, M. Winter and P. Bieker: ACS Sustainable Chem. Eng., 9 (2021) 11314.
  54. H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss and M. Schlosser: Angew. Chem., 120 (2008) 767.
  55. R. B. Beeken, J. J. Garbe, J. M. Gillis, N. R. Petersen, B. W. Podoll and M. R. Stoneman: J. Phys. Chem. Solids., 66 (2005) 882.
  56. Y. T. Wu and P. C. Tsai: JOM., 74 (2022) 4664.
  57. B. Pang, Y. Gan, Y. Xia, H. Huang, X. He and W. Zhang: Front. Chem., 10 (2022) 837978.
  58. J. Zhang, L. Li, C. Zheng, Y. Xia, Y. Gan, H. Huang, C. Liang, X. He, X. Tao and W. Zhang: ACS Appl. Mater. Interfaces., 12 (2020) 41538.
  59. S.-K. Jiang, S.-C. Yang, W.-H. Huang, H.-Y. Sung, R.-Y. Lin, J.-N Li, B.-Y. Tsai, T. Agnihotri, Y. Nikodimos, C.-H. Wang, S. D. Lin, C.-C. Wang, S.-H. Wu, W.-N. Su and B. J. Hwang: J. Mater. Chem. A., 11 (2023) 2910.
  60. J. Su, M. Pasta, Z. Ning, X. Gao, P. G. Bruce and C. R. M. Grovenor: Energy Environ. Sci., 15 (2022) 3805. https://doi.org/10.1039/D2EE01390H
  61. Z. Sun, Y. Lai, N. Lv, Y. Hu, B. Li, L. Jiang, J. Wang, S. Yin, K. Li and F. Liu: ACS Appl. Mater. Interfaces., 13 (2021) 54924.