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Abstract  

This paper introduces an effective and convenient method for utilizing onboard memory space to process remote 
commands, telemetry, and interplanetary network protocol data in satellite onboard systems. By enhancing the doubly 
linked list data structure to store and make accessible variable-length communication protocol data either sequentially or at 
variable locations, the paper enhances memory capacity utilization. The concept of 'grape' is introduced into the doubly 
linked list data structure to manage variable-length data and its access, with performance verification conducted through its 
reference implementation. This novel approach to linked lists is termed 'grape.’ 

초초  록록 

  본 논문은 원격명령과 텔레메트리 및 행성간 네트워크 프로토콜 데이터 처리가 위성 온보드에서 행해질 
때 적용할 수 있는 효과적이고 용이한 온보드 메모리 공간 활용 방법을 소개한다. 이중 연결리스트 자료 
구조를 개선하여 고정이 아닌 가변 길이 통신 프로토콜 데이터를 순차적 또는 가변위치에 저장하고 접근 
가능하도록 하는 기능을 제공함으로써 메모리 용량 대 활용성을 높일 수 있다. 가변 길이 데이터를 저장 
및 액세스하기 위해서 이중 연결리스트 자료구조에 포도 송이 개념을 도입하고 이의 참조 구현을 통해 성
능 검증을 수행하였으며, 이 새로운 개념의 연결리스트를 포도송이 연결리스트로 지칭하였다. 

Key Words : Onboard memory(온보드 메모리), Interplanetary Network(행성간 네트워크), Doubly Linked-list(이중 
연결리스트), Grape Linked-list(포도송이 연결리스트), Space link(우주링크), Delay-/Disruption-Tolerant 
Networking(결함허용네트워크) 

 

 

11..  IInnttrroodduuccttiioonn  
 

 Each Protocol Data Unit (PDU) in a space 

communication transaction must be stored in 

onboard memory before processing. A memory 

handling function that only allows sequential and 

fixed-size length storage and access may increase 

the effort required for handling these PDUs, as well 

as the overhead of designing and implementing the 

memory storage system. The inability to erase 

certain parts of the stored data in the onboard 

memory handling system might severely impact the 

operational concept of PDU management, and may 

necessitate a conservative approach to handling 

abnormal conditions that are not predicted in normal 

operational scenarios. Random storage and access, 

as opposed to sequential methods, can be achieved 

using a doubly linked-list data structure, enabling 

operations such as read, write, copy, move, and 
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remove. However, using a doubly linked-list with 

dynamic memory allocation is suboptimal in highly 

constrained embedded software, such as spacecraft 

onboard systems. Most spacecraft systems prefer 

static, pre-allocated memory pool with fixed 

lengths to avoid the complexities of dynamic 

memory allocation and reconfiguration, as observed.  

An improved method of handling onboard memory 

holding PDUs may be employed during abnormal 

situations encountered during PDU processing. For 

example, an extreme case of resetting or clearing 

the onboard memory may be unnecessary for minor 

corruption in issued PDU blocks during transactions. 

In this study, we introduce a modified handling 

concept for doubly linked-list data structure, 

referred to as the 'grape linked-list,' aimed at 

reducing the need for extensive reconfiguration of 

onboard memory storage, such as resetting or 

clearing the entire memory, in response to minor 

PDU corruption due to harsh space environment[1]. 

We believe the novelty of the 'grape linked-list' 

arises in systems composed of various sizes of 

PDUs and plagued by frequent intermittent packet 

delivery issues. This is because the traditional 

doubly linked-list data structure demands more 

attention and processing power to manage such 

situations. 

This paper is structured as follows: Section 2 

presents a summary of the concerns regarding 

onboard memory processing for space 

communication link data. Section 3 introduces the 

new concept of Grape Linked-List as the main 

theme of this study. In Section 4, various use cases 

are presented to demonstrate the application of the 

core concept of the study and the proposed 

technique. Section 5 compares the results in terms 

of temporal and implementation complexities. 

Finally, Section 6 presents the study's conclusion. 

 

22..  PPrroobblleemmss  ooff  CCoonncceerrnn  
 

In an onboard memory system that only allows 

sequential access to a static and pre-allocated 

fixed-length memory capacity, several 

circumstances may unnecessarily complicate the 

recovery function and process. This complication 

can limit the smooth and efficient usage of memory 

blocks onboard. It is essential to avoid this situation 

as much as possible because significant recovery 

actions are required, making the system difficult to 

manage and operate, either partially or entirely. 

 

22..11  IInnvvaalliiddaattiioonn  ooff  PPrroocceessssiinngg  DDaattaa  
For any reason, partial or entire PDU blocks may 

become invalidated due to anomalies resulting in 

rejection, service denial, or no-operation. The 

affected PDU blocks must be cleared from onboard 

memory before processing or recovered through 

retransmission. In an onboard memory system that 

only offers sequential access service and limited 

PDU block manipulation capability, if this situation 

occurs, the only viable solution may be to clear the 

entire onboard memory. This system cannot 

distinguish between normal PDUs and faulty ones. 

However, this limitation can be resolved by 

selectively removing or handling the faulty PDU 

block from the current onboard memory block chain. 

No empty spaces are allowed to be left after 

deletion, resulting in dead spaces in an onboard 

memory system. This issue can be mitigated by 

using a doubly linked-list, which effectively 

restores those unnecessary blocks to the onboard 

memory system. 

 

22..22  PPrroocceessssiinngg  ooff  OOuutt--ooff--oorrddeerr  PPDDUU  
It is natural to receive bundles out-of-order 

through the IPN (Interplanetary Network) due to 

retransmission for missing blocks during 

transactions. In general, any incomplete PDU blocks 

should be temporarily stored in a designated 

temporary buffer. Within a highly congested 

communication system and in challenging network 

environments like space, this temporary memory 

buffer experiences frequent I/O operations, 

including insertion or deletion, to arrange the out-

of-order delivered PDU blocks. 

During transactions in IPN, each PDU block can 

be configured to have various lengths and may be 

aggregated with others for more efficient handling, 

such as by applying block channel coding. As 

mentioned earlier, problems may arise when out-

of-order PDU blocks, which are not supposed to 

have their lengths known, arrive and need to be 

serialized. 
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In systems that prefer fixed memory block 

allocation and static pre-allocation over dynamic 

allocation, such as embedded computing systems in 

spacecraft, it is often necessary to concatenate 

multiple unit memory blocks to support larger PDU 

blocks. After using the concatenated memory block, 

it is then disassembled back into unit memory 

blocks and awaits the arrival of another set of PDU 

blocks. 

 

33..  GGrraappee  LLiinnkkeedd--LLiisstt  
 

As stated above, we require a mechanism to 

properly address these limitations. Below is a 

summary of the key points to consider: 

· The onboard memory management system 

should support functions for inserting, deleting, 

copying, and moving blocks. These functions 

shall not produce any residual side effects on 

the onboard memory system or the PDU 

processing operation. 

· The onboard memory management system 

should be able to adapt to various lengths of 

incoming or outgoing PDU blocks using fixed-

size memory blocks. The concatenated 

memory that has been used must be 

dismantled into its original small memory 

blocks so that these blocks can be utilized for 

other necessities. 

 

In this section, we present novel enhancements to 

a doubly linked list to address the aforementioned 

considerations. We refer to it as the Grape Linked-

List, GLL, and summarize the important definitions 

of this newly introduced linked list structure. This 

concept of GLL is inspired by the mechanism of 

doubly linked-list[2], unrolled linked list[2], and 

skip-list[3]. 

 

33..11  TThheeoorreemmss  
In this subsection, we list up important theorems 

to GLL. 

 

TThheeoorreemm  11::  GGLLLL’’ss  bbaasseelliinnee  

GLL's baseline is a doubly linked list. Any aspect 

not explicitly addressed in GLL’s theorems follows 

the definitions of a doubly linked list. Fig. 1 shows 

the typical configuration and operation of doubly 

linked-list. 

 

TThheeoorreemm  22::  nneeww  mmeemmbbeerr  vvaarriiaabblleess 

GLL has three distinguished member variables to 

effectively conduct the necessitated functions. 

· super previous: indicates access point to 

previous grape bunch 

· super next: indicates access point to next 

grape bunch 

· vertex: indicates access point to self 

 

 
Fig. 1 Typical Doubly Linked-List 

 

 
Fig. 2 Behavior of Grape Linked-List 

 

Vertex in the GLL must have a valid address, 

indicating that it cannot be NULL, even when 

there's only a single item in the list of GLL. Vertex, 

newly introduced in this study, is one of the biggest 
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differences from the last study[4]. It aims to reduce 

the required traversal steps for accessing adjacent 

GLL objects at the 'grape' level. Vertex is the 

unique value that indicates the object at the 'grape' 

level itself. Each unit list item at this level should 

have a single value for this throughout the 'grape' 

level. 

Super previous and super next can have a valid 

address pointing to an object in the GLL if they 

exist; otherwise, they shall be NULL. For example, 

the super previous of the first object in a GLL 

should be NULL, and the super next of the last 

object in a GLL should be NULL. The super 

previous pointer in a non-vertex should be set to 

NULL to avoid overhead from updating variables 

during list changes. Similarly, the super next pointer 

in a non-vertex that is not the tail should be set to 

NULL for the same performance reasons. In other 

cases, the super previous and super next pointers 

should have a valid address to point to the existing 

super previous and next 'grape' level objects. 

The 'Prev' and 'Next' pointers in the GLL adhere 

to the conventions of a typical doubly linked list. Fig. 

2 shows structure and behavior of GLL. 

 

TThheeoorreemm  33::  iinnsseerrttiioonn  aanndd  ddeelleettiioonn 

The insertion and deletion operations in GLL 

depend on whether the user wants to operate at the 

'grape' level or not. The insertion and deletion 

operations can be performed at either the level of 

individual list elements or at the 'grape' level. 

If the user wants to perform it at non 'grape' level, 

i.e., simply unit list item level, the function shall 

execute it using the currently targeted GLL object 

at the 'grape' level. If no GLL object exists, the 

insertion operation shall result in creating a new 

GLL object at the 'grape' level. 

If a GLL object contains only one list item, 

deleting that single list item will also remove the 

GLL object simultaneously, regardless of the user's 

chosen deletion level. 

In a GLL object, the size can be adjusted freely 

by inserting or deleting list items. These 

adjustments should not leave any empty spaces in 

the GLL object or onboard memory. Deleted items 

are restored to the memory buffer pool for reuse. 

 

TThheeoorreemm  44::  ttrraavveerrssiinngg  lliisstt  iitteemmss 

The traversing operations, i.e., locating previous 

or next object of unit list item level or ‘grape’ level 

shall be provided. 

The traversing operations at the unit list item 

level follow the same conventions as a typical 

doubly linked list. 

The traversing operations at the ‘grape’ level are 

conducted using the ‘super previous’ and ‘super next’ 

methods to locate the vertex of the target GLL 

object. Fig. 3 shows the flow of traversal behavior 

among GLL objects. 

 

 
Fig. 3 Traversal of the Grape Linked-List 

 

As a reference, it is important to note that 

efficient traversal into a 'grape' block and its 

elements within the onboard memory system, 

including GLL objects, is beneficial. The following 

variables in software implementation will be useful 

for expediting location to specified positions in 

linked-list items. 

· list_head: Indicates the beginning of an 

onboard memory system or block. 

· list_curr: Represents the current position of 

the list item being handled or referenced. 

· list_tail: Marks the end of an onboard memory 

system or block. It indicates the last list item 

of the final 'grape' object in the onboard 

memory system. Other than the last 'grape' 

block, the last list item can be accessed by 

referring to the 'prev' position designated by 

the vertex’s 'super next' position as depicted 

in Fig. 3. 

 

If list_curr indicates the middle of a 'grape' block, 

referencing the next 'grape' block requires 



 Onboard Store and Access for Communication Link Data: Grape Linked-List 93 
 

accessing the vertex value to locate its ' super next' 

position, as only the top of the 'grape' block has 

valid references to 'super previous' or 'super next' 

positions as noted. It is essential practice to update 

these three variables whenever a change occurs at 

the 'grape' level or the unit list item level. 

 

TThheeoorreemm  55::  ccooppyyiinngg  aanndd  mmoovviinngg  lliisstt  iitteemmss 

The copying and moving operations adhere to the 

guidelines described in TThheeoorreemm  33 (insertion and 

deletion). When performing copying operations at 

the 'grape' level, a new 'grape' object is created in 

the targeted storage. When performing moving 

operations at the 'grape' level, the existing 'grape' 

object is being transferred to the targeted storage 

location. If these operations occur at the unit list 

item level, the list items being copied or moved will 

be positioned in another targeted storage either as 

a member of an existing 'grape' object or as a newly 

created 'grape' object, depending on the user's 

preference. 

 

TThheeoorreemm  66::  mmeerrggiinngg 

The merging operations in GLL objects require 

two parameters: the left-side 'grape' object and the 

right-side 'grape' object. The designated right-side 

'grape' object is then attached to the designated 

left-side 'grape' object. The vertex of the 

designated right-side 'grape' object should be 

changed to match the value of the vertex in the 

designated left 'grape' object. Additionally, the 

super previous and super next in both 'grape' 

objects need to be updated accordingly. 

 

44..  UUssee  CCaasseess  
 

Several use cases that may benefit from using the 

presented GLL in this paper are stated as follows. 

 

44..11  TTeelleeccoommmmaanndd  rreecceeppttiioonn  oonn  oonnbbooaarrdd  
Telecommands from the ground station cannot be 

assumed to be perfectly stored in onboard memory 

due to RF interference, solar conjunction, bad 

weather conditions, and other factors. 

Telecommands can be grouped into multiple 

command elements. When parts of the command 

block are missing during transmission, they can be 

safely stored in onboard memory temporarily, 

governed by the GLL as stated above, and await the 

missing parts through retransmission. Even when an 

unexpected length of commands is received for the 

missing parts, as it is not always possible to predict 

the incoming telecommand’s volume, GLL certainly 

aids in completing the corrupted telecommand block 

and safely restoring it to the nominal command 

execution queue from the temporary buffer for 

further processing. 

 

44..22  TTeelleemmeettrryy  hhaannddlliinngg  oonn  ggrroouunndd  ssttaattiioonn  
Usually, telemetry is composed of several groups 

that are logically related to specific functions or 

systems, such as thermal and electrical power, on a 

spacecraft. 

The telemetry data needs to be stored along with 

a timestamp for future reference, particularly when 

diagnosing specific onboard times. If GLL is used 

for this purpose, insertion, traversal (search), or 

deletion operations are handled much more 

efficiently, as supported by the DBMS (Database 

Management System). Actually, DLLs are commonly 

used in the development of most DBMSs to 

implement indexes and data structures for efficient 

data management. GLL can enhance the 

performance of DLLs in data management tasks, 

even when only some parts of telemetry are 

received successfully. 

GLL can support grouping of groups, making it 

possible to handle telemetry groups of spacecraft 

systems across subsystems for storing, searching, 

removing, and sorting. 

 

44..33  BBuunnddllee  hhaannddlliinngg  iinn  IIPPNN  
Several studies foresee that IPN (Interplanetary 

Network) in deep space will experience more 

corrupted bundles than conventional space 

communication due to the harsher communication 

environment it encounters[1]. The retransmission 

of lost or corrupt bundles is the baseline operational 

concept in IPN. Therefore, uncompleted segments 

of bundles need to be properly handled rather than 

simply rejecting or denying service to the delivered 

bundles. 

If parts of bundles in a segment of the IPN are 

lost or corrupted during transmission, all received 
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bundles need to be stored in a temporary buffer in a 

convergence layer such as LTP (Licklider 

Transmission Protocol)[5]. Each bundle segment 

can be characterized by its length, priority, and 

demanded reliability. The lost or corrupted bundles 

are requested for retransmission; when they arrive 

at the receiver side without errors, they need to be 

merged with the already stored bundle segments in 

the correct order, ensuring orderly delivery. These 

operations and processes can benefit from GLL due 

to the frequent insertion, deletion, copying, and 

moving operations required to complete the 

corrupted segment. 

Thanks to GLL, the onboard memory system does 

not require a partitioned area to store multiple 

segments of IPN bundles for processing, whether 

nominal or temporary. Instead, GLL offers flexible 

and adaptive methods for handling various 

applications in space, including telemetry, 

telecommand, and IPN bundle transactions. 

 

55..  PPeerrffoorrmmaannccee  AAnnaallyyssiiss  
 

This section presents some thoughts on the 

complexities of temporal dynamics and 

implementation challenges for GLL. In this section, 

we present a comparative analysis of the Big-O 

notation for the GLL method against the traditional 

doubly linked-list. By evaluating the time and 

software complexities of various operations, we aim 

to highlight the efficiency and potential advantages 

of our new approach. 

 

55..11  TTeemmppoorraall  CCoommpplleexxiittiieess  
Table 1 shows the comparison results of the 

temporal complexities between GLL and traditional 

doubly linked-list. 

As shown in Table 1, GLL may offer improved 

temporal performance compared to DLL, especially 

for storage composed of large logical blocks in 

various processing streams, such as insertion and 

deletion. GLL can significantly save processing time 

during sorting because fewer item-moving 

operations are needed when larger logical blocks 

are used, as the contents of the logical blocks are 

highly diverse and do not require sorting. This 

indicates that GLL is an efficient way to handle PDU 

blocks for telecommand, telemetry, or any space 

network protocol, such as DTN(Delay-/Disruption-

Tolerant Networking). 

 

Table 1 Temporal Complexity Comparison with DLL 
and GLL 

Function DLL GLL 

Creation O(1) O(1) 

Insertion* O(n) O(log n) 

Deletion** O(n) O(log n) 

Search*** O(n) O(log n) 

Move/Copy O(n) 

O(n) 

or 

O(log n)**** 

*insertion to an arbitrary position 

**deletion to a logical block 

***can be utilized to sorting operation as well 

****fewer condition checking is needed for a logical block 
 

Table 2 Software Complexity Comparison with DLL 
and GLL 

Test 

Function 

Statemen

ts 

% 

Branches 

Max 

Complexi

ty 

Avg 

Depth 

Ref* 83 28.9 26 3.22 

GLL** 233 26.6 71 4.44 

r(%)*** 280.72 92.04 273.08 137.89 

*Original reference function of linked-list memory block 

allocation not supporting GLL 

**Revised function of linked-list memory block allocation 

to support GLL 

***Difference between the reference code and GLL code, 

calculated by (GLL/Ref) × 100 (%) 

55..22  IImmpplleemmeennttaattiioonn  CCoommpplleexxiittiieess  
The software complexity of onboard memory 

block handling functions increases when compared 

to the original version, which only supports doubly 

linked-lists. An analysis using SourceMonitor[6], 

available as open source, reveals that the maximum 

complexity of the most sophisticated function in 

GLL, specifically linked-list block allocation within 

the source code of KARI DTN software[7], exhibits 

approximately a 173% increase in maximum 

complexity and a 180% increase in code length 

compared to the original source code, which only 

supports doubly linked-lists, as shown in Table 2. 

However, due to the minimization of loop 



 Onboard Store and Access for Communication Link Data: Grape Linked-List 95 
 

elements in both the concept and implementation of 

GLL, it is anticipated that there will be no 

performance issues, and the use of GLL is expected 

to enable efficient handling of space link data. 

 

66..  CCoonncclluussiioonn  
 

The operation of satellite missions and the 

transaction of IPN bundles can benefit from this 

GLL technique and concept. The occurrence of 

chronic deletion or complete memory area clearing 

in fixed-length memory systems with only 

sequential access, caused by simple or partially 

corrupt data, is nearly eliminated in an onboard 

memory system using GLL. 

Each 'grape' block can be efficiently traversed by 

accessing its vertex values. Since every element of 

a 'grape' block possesses a valid vertex value, 

accessing the previous or next block can be nearly 

instantaneous. GLL are being applied to internally 

develop KARI DTN software. This results in source 

code that is simpler and more concise compared to 

the older version of the KARI DTN software, which 

only uses a doubly linked list for the above-

mentioned bundle handling issues. 

This study emphasizes that GLL is more efficient 

in handling cases where received PDUs are partially 

broken and require repair via retransmission, and 

where PDUs are not delivered in order, allowing for 

out-of-order storage due to retransmission. GLL 

can efficiently handle and repair intermittently 

broken PDUs or packets received non-sequentially 

in space communication networks. 

However, GLL requires additional memory to 

store information about super next and super 

previous nodes, as well as vertex addresses, 

compared to the traditional DLL approach. 

Additionally, implementing the GLL concept 

requires more attention due to scattered checking 

points during pointer handling. 

For further study, the GLL implementation code 

can be integrated into an existing DLL 

implementation rather than developed as an 

independent codebase. Since most of GLL's 

functions utilize DLL functions, an abstraction model 

of GLL over DLL can be created. This model will 

enable developers to easily grasp the concept of 

GLL. The complexity of GLL software, as 

mentioned earlier, makes it challenging to 

implement directly on top of a DLL codebase. 
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