
TTeecchhnniiccaall PPaappeerr

Journal of Aerospace System Engineering
Vol.18, No.4, pp.89-95(2024)

EISSN 2508-7150
http://dx.doi.org/10.20910/JASE.2024.18.4.89

통신 링크 데이터 온보드 저장 및 접근: 포도송이 연결리스트

구철회1,†

 1한국항공우주연구원
Onboard Store and Access for Communication Link Data: Grape Linked-List

Cheol Hea Koo1,†
1Korea Aerospace Research Institute

Abstract

This paper introduces an effective and convenient method for utilizing onboard memory space to process remote
commands, telemetry, and interplanetary network protocol data in satellite onboard systems. By enhancing the doubly
linked list data structure to store and make accessible variable-length communication protocol data either sequentially or at
variable locations, the paper enhances memory capacity utilization. The concept of 'grape' is introduced into the doubly
linked list data structure to manage variable-length data and its access, with performance verification conducted through its
reference implementation. This novel approach to linked lists is termed 'grape.’

초초 록록

 본 논문은 원격명령과 텔레메트리 및 행성간 네트워크 프로토콜 데이터 처리가 위성 온보드에서 행해질
때 적용할 수 있는 효과적이고 용이한 온보드 메모리 공간 활용 방법을 소개한다. 이중 연결리스트 자료
구조를 개선하여 고정이 아닌 가변 길이 통신 프로토콜 데이터를 순차적 또는 가변위치에 저장하고 접근
가능하도록 하는 기능을 제공함으로써 메모리 용량 대 활용성을 높일 수 있다. 가변 길이 데이터를 저장
및 액세스하기 위해서 이중 연결리스트 자료구조에 포도 송이 개념을 도입하고 이의 참조 구현을 통해 성
능 검증을 수행하였으며, 이 새로운 개념의 연결리스트를 포도송이 연결리스트로 지칭하였다.

Key Words : Onboard memory(온보드 메모리), Interplanetary Network(행성간 네트워크), Doubly Linked-list(이중
연결리스트), Grape Linked-list(포도송이 연결리스트), Space link(우주링크), Delay-/Disruption-Tolerant
Networking(결함허용네트워크)

11.. IInnttrroodduuccttiioonn

 Each Protocol Data Unit (PDU) in a space

communication transaction must be stored in

onboard memory before processing. A memory

handling function that only allows sequential and

fixed-size length storage and access may increase

the effort required for handling these PDUs, as well

as the overhead of designing and implementing the

memory storage system. The inability to erase

certain parts of the stored data in the onboard

memory handling system might severely impact the

operational concept of PDU management, and may

necessitate a conservative approach to handling

abnormal conditions that are not predicted in normal

operational scenarios. Random storage and access,

as opposed to sequential methods, can be achieved

using a doubly linked-list data structure, enabling

operations such as read, write, copy, move, and

Received: Mar. 13, 2024 Revised: Jun. 07, 2024 Accepted: Jun. 26, 2024
† Corresponding Author
Tel: +82-42-860-2145, E-mail: chkoo@kari.re.kr
Ⓒ The Society for Aerospace System Engineering

90 Cheol Hea Koo

remove. However, using a doubly linked-list with

dynamic memory allocation is suboptimal in highly

constrained embedded software, such as spacecraft

onboard systems. Most spacecraft systems prefer

static, pre-allocated memory pool with fixed

lengths to avoid the complexities of dynamic

memory allocation and reconfiguration, as observed.

An improved method of handling onboard memory

holding PDUs may be employed during abnormal

situations encountered during PDU processing. For

example, an extreme case of resetting or clearing

the onboard memory may be unnecessary for minor

corruption in issued PDU blocks during transactions.

In this study, we introduce a modified handling

concept for doubly linked-list data structure,

referred to as the 'grape linked-list,' aimed at

reducing the need for extensive reconfiguration of

onboard memory storage, such as resetting or

clearing the entire memory, in response to minor

PDU corruption due to harsh space environment[1].

We believe the novelty of the 'grape linked-list'

arises in systems composed of various sizes of

PDUs and plagued by frequent intermittent packet

delivery issues. This is because the traditional

doubly linked-list data structure demands more

attention and processing power to manage such

situations.

This paper is structured as follows: Section 2

presents a summary of the concerns regarding

onboard memory processing for space

communication link data. Section 3 introduces the

new concept of Grape Linked-List as the main

theme of this study. In Section 4, various use cases

are presented to demonstrate the application of the

core concept of the study and the proposed

technique. Section 5 compares the results in terms

of temporal and implementation complexities.

Finally, Section 6 presents the study's conclusion.

22.. PPrroobblleemmss ooff CCoonncceerrnn

In an onboard memory system that only allows

sequential access to a static and pre-allocated

fixed-length memory capacity, several

circumstances may unnecessarily complicate the

recovery function and process. This complication

can limit the smooth and efficient usage of memory

blocks onboard. It is essential to avoid this situation

as much as possible because significant recovery

actions are required, making the system difficult to

manage and operate, either partially or entirely.

22..11 IInnvvaalliiddaattiioonn ooff PPrroocceessssiinngg DDaattaa
For any reason, partial or entire PDU blocks may

become invalidated due to anomalies resulting in

rejection, service denial, or no-operation. The

affected PDU blocks must be cleared from onboard

memory before processing or recovered through

retransmission. In an onboard memory system that

only offers sequential access service and limited

PDU block manipulation capability, if this situation

occurs, the only viable solution may be to clear the

entire onboard memory. This system cannot

distinguish between normal PDUs and faulty ones.

However, this limitation can be resolved by

selectively removing or handling the faulty PDU

block from the current onboard memory block chain.

No empty spaces are allowed to be left after

deletion, resulting in dead spaces in an onboard

memory system. This issue can be mitigated by

using a doubly linked-list, which effectively

restores those unnecessary blocks to the onboard

memory system.

22..22 PPrroocceessssiinngg ooff OOuutt--ooff--oorrddeerr PPDDUU
It is natural to receive bundles out-of-order

through the IPN (Interplanetary Network) due to

retransmission for missing blocks during

transactions. In general, any incomplete PDU blocks

should be temporarily stored in a designated

temporary buffer. Within a highly congested

communication system and in challenging network

environments like space, this temporary memory

buffer experiences frequent I/O operations,

including insertion or deletion, to arrange the out-

of-order delivered PDU blocks.

During transactions in IPN, each PDU block can

be configured to have various lengths and may be

aggregated with others for more efficient handling,

such as by applying block channel coding. As

mentioned earlier, problems may arise when out-

of-order PDU blocks, which are not supposed to

have their lengths known, arrive and need to be

serialized.

 Onboard Store and Access for Communication Link Data: Grape Linked-List 91

In systems that prefer fixed memory block

allocation and static pre-allocation over dynamic

allocation, such as embedded computing systems in

spacecraft, it is often necessary to concatenate

multiple unit memory blocks to support larger PDU

blocks. After using the concatenated memory block,

it is then disassembled back into unit memory

blocks and awaits the arrival of another set of PDU

blocks.

33.. GGrraappee LLiinnkkeedd--LLiisstt

As stated above, we require a mechanism to

properly address these limitations. Below is a

summary of the key points to consider:

· The onboard memory management system

should support functions for inserting, deleting,

copying, and moving blocks. These functions

shall not produce any residual side effects on

the onboard memory system or the PDU

processing operation.

· The onboard memory management system

should be able to adapt to various lengths of

incoming or outgoing PDU blocks using fixed-

size memory blocks. The concatenated

memory that has been used must be

dismantled into its original small memory

blocks so that these blocks can be utilized for

other necessities.

In this section, we present novel enhancements to

a doubly linked list to address the aforementioned

considerations. We refer to it as the Grape Linked-

List, GLL, and summarize the important definitions

of this newly introduced linked list structure. This

concept of GLL is inspired by the mechanism of

doubly linked-list[2], unrolled linked list[2], and

skip-list[3].

33..11 TThheeoorreemmss
In this subsection, we list up important theorems

to GLL.

TThheeoorreemm 11:: GGLLLL’’ss bbaasseelliinnee

GLL's baseline is a doubly linked list. Any aspect

not explicitly addressed in GLL’s theorems follows

the definitions of a doubly linked list. Fig. 1 shows

the typical configuration and operation of doubly

linked-list.

TThheeoorreemm 22:: nneeww mmeemmbbeerr vvaarriiaabblleess

GLL has three distinguished member variables to

effectively conduct the necessitated functions.

· super previous: indicates access point to

previous grape bunch

· super next: indicates access point to next

grape bunch

· vertex: indicates access point to self

Fig. 1 Typical Doubly Linked-List

Fig. 2 Behavior of Grape Linked-List

Vertex in the GLL must have a valid address,

indicating that it cannot be NULL, even when

there's only a single item in the list of GLL. Vertex,

newly introduced in this study, is one of the biggest

92 Cheol Hea Koo

differences from the last study[4]. It aims to reduce

the required traversal steps for accessing adjacent

GLL objects at the 'grape' level. Vertex is the

unique value that indicates the object at the 'grape'

level itself. Each unit list item at this level should

have a single value for this throughout the 'grape'

level.

Super previous and super next can have a valid

address pointing to an object in the GLL if they

exist; otherwise, they shall be NULL. For example,

the super previous of the first object in a GLL

should be NULL, and the super next of the last

object in a GLL should be NULL. The super

previous pointer in a non-vertex should be set to

NULL to avoid overhead from updating variables

during list changes. Similarly, the super next pointer

in a non-vertex that is not the tail should be set to

NULL for the same performance reasons. In other

cases, the super previous and super next pointers

should have a valid address to point to the existing

super previous and next 'grape' level objects.

The 'Prev' and 'Next' pointers in the GLL adhere

to the conventions of a typical doubly linked list. Fig.

2 shows structure and behavior of GLL.

TThheeoorreemm 33:: iinnsseerrttiioonn aanndd ddeelleettiioonn

The insertion and deletion operations in GLL

depend on whether the user wants to operate at the

'grape' level or not. The insertion and deletion

operations can be performed at either the level of

individual list elements or at the 'grape' level.

If the user wants to perform it at non 'grape' level,

i.e., simply unit list item level, the function shall

execute it using the currently targeted GLL object

at the 'grape' level. If no GLL object exists, the

insertion operation shall result in creating a new

GLL object at the 'grape' level.

If a GLL object contains only one list item,

deleting that single list item will also remove the

GLL object simultaneously, regardless of the user's

chosen deletion level.

In a GLL object, the size can be adjusted freely

by inserting or deleting list items. These

adjustments should not leave any empty spaces in

the GLL object or onboard memory. Deleted items

are restored to the memory buffer pool for reuse.

TThheeoorreemm 44:: ttrraavveerrssiinngg lliisstt iitteemmss

The traversing operations, i.e., locating previous

or next object of unit list item level or ‘grape’ level

shall be provided.

The traversing operations at the unit list item

level follow the same conventions as a typical

doubly linked list.

The traversing operations at the ‘grape’ level are

conducted using the ‘super previous’ and ‘super next’

methods to locate the vertex of the target GLL

object. Fig. 3 shows the flow of traversal behavior

among GLL objects.

Fig. 3 Traversal of the Grape Linked-List

As a reference, it is important to note that

efficient traversal into a 'grape' block and its

elements within the onboard memory system,

including GLL objects, is beneficial. The following

variables in software implementation will be useful

for expediting location to specified positions in

linked-list items.

· list_head: Indicates the beginning of an

onboard memory system or block.

· list_curr: Represents the current position of

the list item being handled or referenced.

· list_tail: Marks the end of an onboard memory

system or block. It indicates the last list item

of the final 'grape' object in the onboard

memory system. Other than the last 'grape'

block, the last list item can be accessed by

referring to the 'prev' position designated by

the vertex’s 'super next' position as depicted

in Fig. 3.

If list_curr indicates the middle of a 'grape' block,

referencing the next 'grape' block requires

 Onboard Store and Access for Communication Link Data: Grape Linked-List 93

accessing the vertex value to locate its ' super next'

position, as only the top of the 'grape' block has

valid references to 'super previous' or 'super next'

positions as noted. It is essential practice to update

these three variables whenever a change occurs at

the 'grape' level or the unit list item level.

TThheeoorreemm 55:: ccooppyyiinngg aanndd mmoovviinngg lliisstt iitteemmss

The copying and moving operations adhere to the

guidelines described in TThheeoorreemm 33 (insertion and

deletion). When performing copying operations at

the 'grape' level, a new 'grape' object is created in

the targeted storage. When performing moving

operations at the 'grape' level, the existing 'grape'

object is being transferred to the targeted storage

location. If these operations occur at the unit list

item level, the list items being copied or moved will

be positioned in another targeted storage either as

a member of an existing 'grape' object or as a newly

created 'grape' object, depending on the user's

preference.

TThheeoorreemm 66:: mmeerrggiinngg

The merging operations in GLL objects require

two parameters: the left-side 'grape' object and the

right-side 'grape' object. The designated right-side

'grape' object is then attached to the designated

left-side 'grape' object. The vertex of the

designated right-side 'grape' object should be

changed to match the value of the vertex in the

designated left 'grape' object. Additionally, the

super previous and super next in both 'grape'

objects need to be updated accordingly.

44.. UUssee CCaasseess

Several use cases that may benefit from using the

presented GLL in this paper are stated as follows.

44..11 TTeelleeccoommmmaanndd rreecceeppttiioonn oonn oonnbbooaarrdd
Telecommands from the ground station cannot be

assumed to be perfectly stored in onboard memory

due to RF interference, solar conjunction, bad

weather conditions, and other factors.

Telecommands can be grouped into multiple

command elements. When parts of the command

block are missing during transmission, they can be

safely stored in onboard memory temporarily,

governed by the GLL as stated above, and await the

missing parts through retransmission. Even when an

unexpected length of commands is received for the

missing parts, as it is not always possible to predict

the incoming telecommand’s volume, GLL certainly

aids in completing the corrupted telecommand block

and safely restoring it to the nominal command

execution queue from the temporary buffer for

further processing.

44..22 TTeelleemmeettrryy hhaannddlliinngg oonn ggrroouunndd ssttaattiioonn
Usually, telemetry is composed of several groups

that are logically related to specific functions or

systems, such as thermal and electrical power, on a

spacecraft.

The telemetry data needs to be stored along with

a timestamp for future reference, particularly when

diagnosing specific onboard times. If GLL is used

for this purpose, insertion, traversal (search), or

deletion operations are handled much more

efficiently, as supported by the DBMS (Database

Management System). Actually, DLLs are commonly

used in the development of most DBMSs to

implement indexes and data structures for efficient

data management. GLL can enhance the

performance of DLLs in data management tasks,

even when only some parts of telemetry are

received successfully.

GLL can support grouping of groups, making it

possible to handle telemetry groups of spacecraft

systems across subsystems for storing, searching,

removing, and sorting.

44..33 BBuunnddllee hhaannddlliinngg iinn IIPPNN
Several studies foresee that IPN (Interplanetary

Network) in deep space will experience more

corrupted bundles than conventional space

communication due to the harsher communication

environment it encounters[1]. The retransmission

of lost or corrupt bundles is the baseline operational

concept in IPN. Therefore, uncompleted segments

of bundles need to be properly handled rather than

simply rejecting or denying service to the delivered

bundles.

If parts of bundles in a segment of the IPN are

lost or corrupted during transmission, all received

94 Cheol Hea Koo

bundles need to be stored in a temporary buffer in a

convergence layer such as LTP (Licklider

Transmission Protocol)[5]. Each bundle segment

can be characterized by its length, priority, and

demanded reliability. The lost or corrupted bundles

are requested for retransmission; when they arrive

at the receiver side without errors, they need to be

merged with the already stored bundle segments in

the correct order, ensuring orderly delivery. These

operations and processes can benefit from GLL due

to the frequent insertion, deletion, copying, and

moving operations required to complete the

corrupted segment.

Thanks to GLL, the onboard memory system does

not require a partitioned area to store multiple

segments of IPN bundles for processing, whether

nominal or temporary. Instead, GLL offers flexible

and adaptive methods for handling various

applications in space, including telemetry,

telecommand, and IPN bundle transactions.

55.. PPeerrffoorrmmaannccee AAnnaallyyssiiss

This section presents some thoughts on the

complexities of temporal dynamics and

implementation challenges for GLL. In this section,

we present a comparative analysis of the Big-O

notation for the GLL method against the traditional

doubly linked-list. By evaluating the time and

software complexities of various operations, we aim

to highlight the efficiency and potential advantages

of our new approach.

55..11 TTeemmppoorraall CCoommpplleexxiittiieess
Table 1 shows the comparison results of the

temporal complexities between GLL and traditional

doubly linked-list.

As shown in Table 1, GLL may offer improved

temporal performance compared to DLL, especially

for storage composed of large logical blocks in

various processing streams, such as insertion and

deletion. GLL can significantly save processing time

during sorting because fewer item-moving

operations are needed when larger logical blocks

are used, as the contents of the logical blocks are

highly diverse and do not require sorting. This

indicates that GLL is an efficient way to handle PDU

blocks for telecommand, telemetry, or any space

network protocol, such as DTN(Delay-/Disruption-

Tolerant Networking).

Table 1 Temporal Complexity Comparison with DLL
and GLL

Function DLL GLL

Creation O(1) O(1)

Insertion* O(n) O(log n)

Deletion** O(n) O(log n)

Search*** O(n) O(log n)

Move/Copy O(n)

O(n)

or

O(log n)****

*insertion to an arbitrary position

**deletion to a logical block

***can be utilized to sorting operation as well

****fewer condition checking is needed for a logical block

Table 2 Software Complexity Comparison with DLL
and GLL

Test

Function

Statemen

ts

%

Branches

Max

Complexi

ty

Avg

Depth

Ref* 83 28.9 26 3.22

GLL** 233 26.6 71 4.44

r(%)*** 280.72 92.04 273.08 137.89

*Original reference function of linked-list memory block

allocation not supporting GLL

**Revised function of linked-list memory block allocation

to support GLL

***Difference between the reference code and GLL code,

calculated by (GLL/Ref) × 100 (%)

55..22 IImmpplleemmeennttaattiioonn CCoommpplleexxiittiieess
The software complexity of onboard memory

block handling functions increases when compared

to the original version, which only supports doubly

linked-lists. An analysis using SourceMonitor[6],

available as open source, reveals that the maximum

complexity of the most sophisticated function in

GLL, specifically linked-list block allocation within

the source code of KARI DTN software[7], exhibits

approximately a 173% increase in maximum

complexity and a 180% increase in code length

compared to the original source code, which only

supports doubly linked-lists, as shown in Table 2.

However, due to the minimization of loop

 Onboard Store and Access for Communication Link Data: Grape Linked-List 95

elements in both the concept and implementation of

GLL, it is anticipated that there will be no

performance issues, and the use of GLL is expected

to enable efficient handling of space link data.

66.. CCoonncclluussiioonn

The operation of satellite missions and the

transaction of IPN bundles can benefit from this

GLL technique and concept. The occurrence of

chronic deletion or complete memory area clearing

in fixed-length memory systems with only

sequential access, caused by simple or partially

corrupt data, is nearly eliminated in an onboard

memory system using GLL.

Each 'grape' block can be efficiently traversed by

accessing its vertex values. Since every element of

a 'grape' block possesses a valid vertex value,

accessing the previous or next block can be nearly

instantaneous. GLL are being applied to internally

develop KARI DTN software. This results in source

code that is simpler and more concise compared to

the older version of the KARI DTN software, which

only uses a doubly linked list for the above-

mentioned bundle handling issues.

This study emphasizes that GLL is more efficient

in handling cases where received PDUs are partially

broken and require repair via retransmission, and

where PDUs are not delivered in order, allowing for

out-of-order storage due to retransmission. GLL

can efficiently handle and repair intermittently

broken PDUs or packets received non-sequentially

in space communication networks.

However, GLL requires additional memory to

store information about super next and super

previous nodes, as well as vertex addresses,

compared to the traditional DLL approach.

Additionally, implementing the GLL concept

requires more attention due to scattered checking

points during pointer handling.

For further study, the GLL implementation code

can be integrated into an existing DLL

implementation rather than developed as an

independent codebase. Since most of GLL's

functions utilize DLL functions, an abstraction model

of GLL over DLL can be created. This model will

enable developers to easily grasp the concept of

GLL. The complexity of GLL software, as

mentioned earlier, makes it challenging to

implement directly on top of a DLL codebase.

AAcckknnoowwlleeddggmmeenntt

 This work was funded by the Korea

Meteorological Administration’s Research and

Development Program “The Development of

Meteorological Satellite Operation and Application

Technology” under Grant (KMA2013-03720).

RReeffeerreenncceess

[1] A. G. Voyiatzis, “A Survey of Delay- and Disruption-

Tolerant Networking Applications”, Journal of Internet

Engineering, vol. 5, no. 1, pp. 331-344, 2012.
[2] N. Karumanchi, Data structures and algorithms made

easy, CareerMonk Publications, Bombay India, 2010
[3] C. P. Rangan, Handbook of Data Structures and

Applications, Ch14, 2nd Ed., CRC press, FL U.S., 2018
[4] C. H. Koo, S. Y. Kang, H. Y. Choung, J. H. Lee, S. C. Lee,

and M. S. Lee, “Improvement Study for Satellite CSA

Function for Easy Maintenance of Mission Commands,”

Proc. Of the KSAS 2023 Fall Conference, Hongcheon,
Korea, pp. 708-709, November 2023.

[5] M. Ramadas, S. C. Burleigh, and S. Farrell, “RFC 5326,

Licklider Transmission Protocol Specification,” IRTF

DTN Research Group, 2008. [Online] Available:
https://tools.ietf.org/ html/rfc5326

[6] https://www.derpaul.net/SourceMonitor/
[7] C. H. Koo and S. C. Burleigh, “Structural Considerations

for Generating and Handling LTP Report Segments from
an Interoperability Testing,” Journal of Korean Institute of

Communications and Information Sciences, vol 47, no. 12,
pp. 2065-2077, 2022.

