DOI QR코드

DOI QR Code

Inhibition of Tumoral VISTA to Overcome TKI Resistance via Downregulation of the AKT/mTOR and JAK2/STAT5 Pathways in Chronic Myeloid Leukemia

  • Kexin Ai (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Mu Chen (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Zhao Liang (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Xiangyang Ding (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Yang Gao (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Honghao Zhang (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Suwan Wu (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Yanjie He (Department of Hematology, Zhujiang Hospital, Southern Medical University) ;
  • Yuhua Li (Department of Hematology, Zhujiang Hospital, Southern Medical University)
  • Received : 2024.01.22
  • Accepted : 2024.06.10
  • Published : 2024.09.01

Abstract

Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for chronic myeloid leukemia (CML). However, TKI resistance poses a significant challenge, leading to treatment failure and disease progression. Resistance mechanisms include both BCR::ABL1-dependent and BCR::ABL1-independent pathways. The mechanisms underlying BCR::ABL1 independence remain incompletely understood, with CML cells potentially activating alternative signaling pathways, including the AKT/mTOR and JAK2/STAT5 pathways, to compensate for the loss of BCR::ABL1 kinase activity. This study explored tumoral VISTA (encoded by VSIR) as a contributing factor to TKI resistance in CML patients and identified elevated tumoral VISTA levels as a marker of resistance and poor survival. Through in vitro and in vivo analyses, we demonstrated that VSIR knockdown and the application of NSC-622608, a novel VISTA inhibitor, significantly impeded CML cell proliferation and induced apoptosis by attenuating the AKT/mTOR and JAK2/STAT5 pathways, which are crucial for CML cell survival independent of BCR::ABL1 kinase activity. Moreover, VSIR overexpression promoted TKI resistance in CML cells. Importantly, the synergistic effect of NSC-622608 with TKIs offers a potent therapeutic avenue against both imatinib-sensitive and imatinib-resistant CML cells, including those harboring the challenging T315I mutation. Our findings highlight the role of tumoral VISTA in mediating TKI resistance in CML, suggesting that inhibition of VISTA, particularly in combination with TKIs, is an innovative approach to enhancing treatment outcomes in CML patients, irrespective of BCR::ABL1 mutation status. This study not only identified a new pathway contributing to TKI resistance but also revealed the possibility of targeting tumoral VISTA as a means of overcoming this significant clinical challenge.

Keywords

Acknowledgement

This research was supported by the the National Natural Science Foundation of China (No. 82270233), Frontier Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (No. 2018GZR110105014), The Science and Technology Program of Guangzhou (No. 202201011041) and the National Natural Science Foundation of China (No. U2001224).

References

  1. Alves, R., Goncalves, A. C., Rutella, S., Almeida, A. M., De Las Rivas, J., Trougakos, I. P. and Sarmento Ribeiro, A. B. (2021) Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers (Basel) 13, 4820.
  2. Chen, Y., Feng, R., He, B., Wang, J., Xian, N., Huang, G. and Zhang, Q. (2021) PD-1H expression associated with CD68 macrophage marker confers an immune-activated microenvironment and favorable overall survival in human esophageal squamous cell carcinoma. Front. Mol. Biosci. 8, 777370.
  3. Chen, Y., Xie, X., Wu, A., Wang, L., Hu, Y., Zhang, H. and Li, Y. (2018) A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J. Exp. Clin. Cancer Res. 37, 12.
  4. Chorzalska, A., Ahsan, N., Rao, R. S. P., Roder, K., Yu, X., Morgan, J., Tepper, A., Hines, S., Zhang, P., Treaba, D. O., Zhao, T. C., Olszewski, A. J., Reagan, J. L., Liang, O., Gruppuso, P. A. and Dubielecka, P. M. (2018) Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-kappaB pathways in a model of chronic myeloid leukemia. Mol. Oncol. 12, 630-647.
  5. De Novellis, D., Cacace, F., Caprioli, V., Wierda, W. G., Mahadeo, K. M. and Tambaro, F. P. (2021) The TKI era in chronic leukemias. Pharmaceutics 13, 2201.
  6. Deng, J., Li, J., Sarde, A., Lines, J. L., Lee, Y. C., Qian, D. C., Pechenick, D. A., Manivanh, R., Le Mercier, I., Lowrey, C. H., Varn, F. S., Cheng, C., Leib, D. A., Noelle, R. J. and Mabaera, R. (2019) Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol. Res. 7, 1079-1090.
  7. Eide, C. A. and O'Hare, T. (2015) Chronic myeloid leukemia: advances in understanding disease biology and mechanisms of resistance to tyrosine kinase inhibitors. Curr. Hematol. Malig. Rep. 10, 158-166.
  8. Gabr, M. T. and Gambhir, S. S. (2020) Discovery and optimization of small-molecule ligands for V-domain Ig suppressor of T-cell activation (VISTA). J. Am. Chem. Soc. 142, 16194-16198.
  9. Hong, S., Yuan, Q., Xia, H., Zhu, G., Feng, Y., Wang, Q., Zhang, Z., He, W., Lu, J., Dong, C. and Ni, L. (2019) Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential target for immunotherapy. Protein Cell 10, 840-845.
  10. Hosseinkhani, N., Derakhshani, A., Shadbad, M. A., Argentiero, A., Racanelli, V., Kazemi, T., Mokhtarzadeh, A., Brunetti, O., Silvestris, N. and Baradaran, B. (2021) The role of V-domain Ig suppressor of T cell activation (VISTA) in cancer therapy: lessons learned and the road ahead. Front. Immunol. 12, 676181.
  11. Im, E., Sim, D. Y., Lee, H. J., Park, J. E., Park, W. Y., Ko, S., Kim, B., Shim, B. S. and Kim, S. H. (2022) Immune functions as a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy. Semin. Cancer Biol. 86, 1066-1075.
  12. Irani, Y. D., Kok, C. H., Clarson, J., Shanmuganathan, N., Branford, S., Yeung, D. T., Ross, D. M., Hughes, T. P. and Yong, A. S. (2023) Association of TIM-3 checkpoint receptor expression on T cells with treatment-free remission in chronic myeloid leukemia. Blood Adv. 7, 2364-2374.
  13. Jabbour, E. and Kantarjian, H. (2022) Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am. J. Hematol. 97, 1236-1256.
  14. Jiang, Q., Li, Z., Qin, Y., Li, W., Xu, N., Liu, B., Zhang, Y., Meng, L., Zhu, H., Du, X., Chen, S., Liang, Y., Hu, Y., Liu, X., Song, Y., Men, L., Chen, Z., Niu, Q., Wang, H., Lu, M., Yang, D., Zhai, Y. and Huang, X. (2022) Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: results of an open-label, multicenter phase 1/2 trial. J. Hematol. Oncol. 15, 113.
  15. Krishnan, V., Schmidt, F., Nawaz, Z., Venkatesh, P. N., Lee, K. L., Ren, X., Chan, Z. E., Yu, M., Makheja, M., Rayan, N. A., Lim, M. G. L., Cheung, A. M. S., Bari, S., Chng, W. J., Than, H., Ouyang, J., Rackham, O., Tan, T. Z., Hwang, W. Y. K., Chuah, C., Prabhakar, S. and Ong, S. T. (2023) A single-cell atlas identifies pretreatment features of primary imatinib resistance in chronic myeloid leukemia. Blood 141, 2738-2755.
  16. Liao, H., Zhu, H., Liu, S. and Wang, H. (2018) Expression of V-domain immunoglobulin suppressor of T cell activation is associated with the advanced stage and presence of lymph node metastasis in ovarian cancer. Oncol. Lett. 16, 3465-3472.
  17. Liu, J., Zhang, Y., Huang, H., Lei, X., Tang, G., Cao, X. and Peng, J. (2021) Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem. Biol. Drug Des. 97, 649-664.
  18. Loscocco, F., Visani, G., Galimberti, S., Curti, A. and Isidori, A. (2019) BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia. Front. Oncol. 9, 939.
  19. Lussana, F., Intermesoli, T., Stefanoni, P. and Rambaldi, A. (2018) Mechanisms of resistance to targeted therapies in chronic myeloid leukemia. Handb. Exp. Pharmacol. 249, 231-250.
  20. Marce, S., Cortes, M., Zamora, L., Cabezon, M., Grau, J., Milla, F. and Feliu, E. (2015) A thirty-five nucleotides BCR-ABL1 insertion mutation of controversial significance confers resistance to imatinib in a patient with chronic myeloid leukemia (CML). Exp. Mol. Pathol. 99, 16-18.
  21. Meenakshi Sundaram, D. N., Jiang, X., Brandwein, J. M., ValenciaSerna, J., Remant, K. C. and Uludag, H. (2019) Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov. Today 24, 1355-1369.
  22. Mortezaee, K., Majidpoor, J. and Najafi, S. (2022) VISTA immune regulatory effects in bypassing cancer immunotherapy: updated. Life Sci. 310, 121083.
  23. Mulati, K., Hamanishi, J., Matsumura, N., Chamoto, K., Mise, N., Abiko, K., Baba, T., Yamaguchi, K., Horikawa, N., Murakami, R., Taki, M., Budiman, K., Zeng, X., Hosoe, Y., Azuma, M., Konishi, I. and Mandai, M. (2019) VISTA expressed in tumour cells regulates T cell function. Br. J. Cancer 120, 115-127.
  24. Muller, S., Victoria Lai, W., Adusumilli, P. S., Desmeules, P., Frosina, D., Jungbluth, A., Ni, A., Eguchi, T., Travis, W. D., Ladanyi, M., Zauderer, M. G. and Sauter, J. L. (2020) V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod. Pathol. 33, 303-311.
  25. Pagliuca, S., Gurnari, C., Zhang, K., Kewan, T., Bahaj, W., Mori, M., Nautiyal, I., Rubio, M. T., Ferraro, F., Maciejewski, J. P., Wang, L. and Visconte, V. (2022) Comprehensive transcriptomic analysis of VISTA in acute myeloid leukemia: insights into its prognostic value. Int. J. Mol. Sci. 23, 14885.
  26. Patel, A. B., O'Hare, T. and Deininger, M. W. (2017) Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol. Oncol. Clin. North Am. 31, 589-612.
  27. Scalzulli, E., Carmosino, I., Bisegna, M. L., Martelli, M. and Breccia, M. (2022) CML resistant to 2nd-generation TKIs: mechanisms, next steps, and new directions. Curr. Hematol. Malig. Rep. 17, 198-205.
  28. Schaafsma, E., Croteau, W., ElTanbouly, M., Nowak, E. C., Smits, N. C., Deng, J., Sarde, A., Webber, C. A., Rabadi, D., Cheng, C., Noelle, R. and Lines, J. L. (2023) VISTA targeting of T-cell quiescence and myeloid suppression overcomes adaptive resistance. Cancer Immunol. Res. 11, 38-55.
  29. Schaafsma, E., Croteau, W., ElTanbouly, M. A., Nowak, E. C., Smits, N. C., Deng, J., Sarde, A., Webber, C. A., Rabadi, D., Cheng, C., Noelle, R. and Lines, J. L. (2022) VISTA targeting of T-cell quiescence and myeloid suppression overcomes adaptive resistance. Cancer Immunol. Res. 11, 38-55.
  30. Stuckey, R., Lopez Rodriguez, J. F. and Gomez-Casares, M. T. (2022) Discontinuation of tyrosine kinase inhibitors in patients with chronic myeloid leukemia: a review of the biological factors associated with treatment-free remission. Curr. Oncol. Rep. 24, 415-426.
  31. Talati, C. and Pinilla-Ibarz, J. (2018) Resistance in chronic myeloid leukemia: definitions and novel therapeutic agents. Curr. Opin. Hematol. 25, 154-161.
  32. Villarroel-Espindola, F., Yu, X., Datar, I., Mani, N., Sanmamed, M., Velcheti, V., Syrigos, K., Toki, M., Zhao, H., Chen, L., Herbst, R. S. and Schalper, K. A. (2018) Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin. Cancer Res. 24, 1562-1573.
  33. Wang, L., Jia, B., Claxton, D. F., Ehmann, W. C., Rybka, W. B., Mineishi, S., Naik, S., Khawaja, M. R., Sivik, J., Han, J., Hohl, R. J. and Zheng, H. (2018) VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML. Oncoimmunology 7, e1469594.
  34. Xie, S., Huang, J., Qiao, Q., Zang, W., Hong, S., Tan, H., Dong, C., Yang, Z. and Ni, L. (2018) Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol. Immunother. 67, 1685-1694.
  35. Yasinska, I. M., Meyer, N. H., Schlichtner, S., Hussain, R., Siligardi, G., Casely-Hayford, M., Fiedler, W., Wellbrock, J., Desmet, C., Calzolai, L., Varani, L., Berger, S. M., Raap, U., Gibbs, B. F., Fasler-Kan, E. and Sumbayev, V. V. (2020) Ligand-receptor interactions of galectin-9 and VISTA suppress human T lymphocyte cytotoxic activity. Front. Immunol. 11, 580557.
  36. Zheng, S., Zhang, K., Zhang, X., Xiao, Y., Wang, T. and Jiang, S. (2022) Development of inhibitors targeting the V-domain Ig suppressor of T cell activation signal pathway. J. Med. Chem. 65, 11900-11912.
  37. Zong, L., Yu, S., Mo, S., Zhou, Y., Xiang, Y., Lu, Z. and Chen, J. (2021) High VISTA expression correlates with a favorable prognosis in patients with colorectal cancer. J. Immunother. 44, 22-28.