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EIGENVALUES AND CONGRUENCES FOR THE WEIGHT 3

PARAMODULAR NONLIFTS OF LEVELS 61, 73, AND 79

Cris Poor, Jerry Shurman, and David S. Yuen

Abstract. We use Borcherds products to give a new construction of the

weight 3 paramodular nonlift eigenform fN for levels N = 61, 73, 79. We
classify the congruences of fN to Gritsenko lifts. We provide techniques

that compute eigenvalues to support future modularity applications. Our

method does not compute Hecke eigenvalues from Fourier coefficients but
instead uses elliptic modular forms, specifically the restrictions of Grit-

senko lifts and their images under the slash operator to modular curves.

1. Introduction

Let S3(K(N)) denote the space of weight 3 paramodular cusp forms of
level N . We compute the nonlift newforms fN ∈ S3(K(N)) for the prime
levels N = 61, 73, 79, first computed in [26], by a simple new construction that
expresses them as Borcherds products, thereby making their Hecke eigenvalues
at bad primes accessible. This new construction also lets us use the integrality
of Borcherds product Fourier expansions to prove congruences of Fourier coeffi-
cients and of eigenvalues between lifts and nonlifts. Each congruence holds be-
tween fN and a Gritsenko lift g; the congruence holds over the number ring OK

of the number field K = Q(a), with a ∈ Z the T(2)-eigenvalue of g. We find
all such congruences. The methods of orthogonal modular forms [4] provide
more powerful and versatile methods of proving congruences among eigenvalues
for weights k ≥ 3 but do not address congruences among Fourier coefficients.
Also we give speedups for computing Hecke operators. These speedups were
necessary for the computations of [3], where they were only partly explained,
and they are necessary for the computations of this article. This article gives
the speedups for bad prime Hecke operator computations for the first time.

After this introduction and a section that gives some background, Proposi-
tions 3.1, 3.5, and 3.6, for N = 61, 73, 79, construct the nonlift newform fN
that combines with specified Gritsenko lifts to span S3(K(N)), all these basis
elements having Fourier coefficients in Z. Each fN is a finite integer linear
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combination of the Gritsenko lifts plus one more term of the form mf where
m ∈ Z and f = GiGj/Gk with three of the Gritsenko lifts, and each summand
of fN has Fourier coefficients in Z. All the Gritsenko lifts are also Borcherds
products.

In the next section, Theorems 4.3, 4.4, and 4.5 construct congruences for
N = 61, 73, 79. The theorems are similar, but the levels have distinct features.
Each theorem makes reference to eigenvalues of the Hecke operator T(2), usu-
ally denoted a.

• For N = 61, the polynomial of T(2) is irreducible of degree 6 and a is
any of its roots. With K = Q(a), an OK-linear combination g(a) of
the aforementioned Gritsenko lifts/Borcherds products is an eigenform
congruent to f61 modulo the OK-ideal a = ⟨43, a+7⟩, and a is the only
such ideal. This congruence is proved in [4], along with new types of
congruences.

• For N = 73, the polynomial of T(2) factors into terms of degrees 1
and 7. The linear term gives rise to an eigenform g1, an integer linear
combination of the relevant Gritsenko lifts/Borcherds products, having
T(2)-eigenvalue 9, congruent to f73 modulo 3Z, and 3Z is the only such
ideal. With a any root of the degree-7 polynomial and K = Q(a), an
OK-linear combination g7(a) of the Gritsenko lifts/Borcherds products
is an eigenform congruent to f73 modulo the OK-ideals a = ⟨3, a⟩ and
b = ⟨13, a+ 6⟩, and these are the only such ideals.

• For N = 79, the polynomial of T(2) factors into terms of degrees 2
and 5. Similarly to the previous two theorems, these give rise to g2(a)
congruent to f79 modulo a = ⟨2, a+ 1⟩ and this is the only such ideal,
and g5(b) congruent to f79 modulo b = ⟨8, w⟩ where w is a helpful
algebraic integer and b is the only such ideal.

Finally, the work of Section 5 leads to the speedups for computing the action
of Hecke operators even at bad primes, given in Propositions 5.3 and 5.6. Using
these speedups, we were able to compute eigenvalues and Euler polynomials at
levels 61, 73, and 79 that confirm values reported by Rama and Tornaŕıa at
the companion web page [28] to [27]; a link to our code at GitHub is at [35].

These computations are carried out by the technique of restricting paramod-
ular forms to modular curves, as in [3], with this technique facilitated by our
new representations of the nonlifts fN . The speedups of this article can sup-
port restriction computations in weight 2 where the systematic methods of
orthogonal modular forms do not apply.

For the interested reader, we give a partial narrative of recent results related
to this project.

Golyshev and von Straten [6] recently discovered a Calabi–Yau threefold with
conductor N = 79. This paper was originally motivated by the idea of support-
ing a proof of its modularity that would proceed by showing the equivalence of
the associated Galois representations, as in [3]; in fact all nonlift paramodular
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weight 3 cusp forms with rational eigenvalues are candidates for such proofs,
and this paper works with the first three cases of prime level. The first appear-
ance of the aforementioned fN -eigenvalues occurred in the work of Ash, Gun-
nells, and McConnell [1], who were searching for an element of the cohomology
space H5(Γ0(N);C) that genuinely arises from SL(4). Here Γ0(N) ⊆ SL4(Z)
is the subgroup of elements having bottom row congruent to (0, 0, 0, ∗) mod N .
Although they did not find such an element, for N = 61, 73, 79 they did see 2
and 3-Euler factors that they believed originated from degree 2 Siegel modular
cusp forms.

Paramodular nonlift newforms in S3(K(N)) were constructed as holomor-
phic quotients of Gritsenko lifts in [26] for N = 61, 73, 79. Eigenvalues were
computed directly from the Fourier coefficients, and enough Fourier coefficients
were computed to give the 2, 3, and 5-Euler factors. The existence of f61, for
example, follows from the dimension formula for prime levels due to Ibukiyama
[16], namely dimS3(K(61)) = 7, and the dimension of lifts dimJcusp3,61 = 6 from

[5]. Actually, 61 is the lowest level, prime or composite, for which S3(K(N))
contains nonlifts; the first such levels are 61, 69, 73, 76, 79, 82, 85, 87, 89.

Golyshev and Mellit developed an experimental method, relying on the ex-
istence of a functional equation, to directly search for L-series. In 2010, Mellit
found the first 53 Dirichlet coefficients of a degree 4 L-series with conductor 61
and matched the initial coefficients with the Euler factors for L(s, f61, spin) in
the arXiv version of [26].

Supported by increasingly broad dimension formulae, Ibukiyama proposed
conjectures relating scalar [14, 15] and vector [17, 19] paramodular forms for
GSp(4) of weight k ≥ 3 to algebraic modular forms on the compact twist
GU(2, B), where B is a definite quaternion algebra. A form of the conjecture
in [17] has been proven by van Hoften [34]. The conjecture of Ibukiyama and
Kitayama in [19] has been proven by Rösner and Weissauer in [31], and broad-
ened in [4] to allow the discriminant of the quaternion algebra B to properly
divide the level N . The main result of Dummigan, Pacetti, Rama, and Tornaŕıa
in [4] is to give a correspondence, influenced by [18], between algebraic modular
forms for GU(2, B) and orthogonal modular forms for a carefully chosen quinary
lattice. As a consequence, the Hecke eigenvalues of paramodular newforms and
certain orthogonal modular forms agree for weight k ≥ 3 and levels N such that
p∥N for some prime p. Fast methods for computing eigenvalues of orthogonal
modular forms for prime levels N were developed by a collaboration of Hein,
Ladd, and Tornaŕıa [13,21]. Rama and Tornaŕıa [27] extended these methods to
orthogonal modular forms with characters involving the spinor norm, and they
conjectured a Hecke invariant isomorphism for prime N between S3 (K(N))
and a direct sum of spaces of orthogonal modular forms with trivial and non-
trivial characters. This work was a motivation for [31]. Hein [13] computed
Euler factors for p < 100 and prime levels N ≤ 197. The appendix of [21]
contains Euler factors for primes 3 ≤ p ≤ 31 and prime levels N ranging from
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61 to 359. In [27] the 2, 3, and 5-Euler factors are given for squarefree lev-
els N < 1000. An even larger data set of eigenvalues of orthogonal modular
forms for levels N meeting the condition of [4] has been given by Assaf, Ladd,
Rama, Tornaŕıa, and Voight in [2]. This includes the eigenvalues of T (pj) for
similitudes pj < 200, 1 ≤ j ≤ 2, for weight three paramodular newforms.

Acknowledgments. The authors are grateful to Neil Dummigan and Dave
Roberts for helpful comments. This project was completed during a SQuaRE
at the American Institute for Mathematics, and we thank AIM for providing
a supportive and mathematically rich environment. We thank the referee for
their close reading and constructive suggestions.

2. Background

The set of positive integers is denoted N, the set of nonnegative integers N0.
The integer ring of a number field K is denoted OK . The OK-ideal generated
by any set S ⊆ OK is denoted ⟨S⟩, but we usually write pOK for ⟨p⟩ when p is
a rational prime. The ideal norm and the Galois norm from K to Q are both
denoted N, so that N(⟨a⟩) = |N(a)| for all a ∈ OK .

2.1. Paramodular forms

2.1.1. Definitions, Fourier series representation. The degree 2 symplectic
group Sp(2) of 4 × 4 matrices is defined by the condition g′Jg = J , where
the prime denotes matrix transpose and J is the skew form

(
0 −1
1 0

)
with each

block 2× 2. The Klingen parabolic subgroup of Sp(2) is

P2,1 = {


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 },

with either line of three zeros forcing the remaining two because the matrices
are symplectic. For any positive integer N , the paramodular group K(N) of
degree 2 and level N is the group of rational symplectic matrices that stabilize
the column vector lattice Z⊕ Z⊕ Z⊕NZ. In coordinates,

K(N) = {


∗ ∗N ∗ ∗
∗ ∗ ∗ ∗/N
∗ ∗N ∗ ∗
∗N ∗N ∗N ∗

 ∈ Sp2(Q) : all ∗ entries integral }.

Let H2 denote the Siegel upper half space of 2×2 symmetric complex matri-
ces that have positive definite imaginary part, generalizing the complex upper
half plane H. Elements of this space are written

Ω =

(
τ z
z ω

)
∈ H2,
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with τ, ω ∈ H, z ∈ C, and Im(Ω) > 0. Also, letting e(w) = e2πiw for w ∈ C,
our standard notation throughout is

q = e(τ), ζ = e(z), ξ = e(ω).

The real symplectic group Sp2(R) acts on H2 as fractional linear transforma-
tions, g(Ω) = (aΩ + b)(cΩ + d)−1 for g =

(
a b
c d

)
, and the automorphy factor

is j(g,Ω) = det(cΩ + d). Fix an integer k. Any function f : H2 −→ C and
any real symplectic matrix g ∈ Sp2(R) combine to form another such function
through the weight k slash operator,

(f |kg)(Ω) = j(g,Ω)−kf(g(Ω)).

When k is well established, we freely write f |g rather than f |kg. A paramodular
form of weight k and level N is a holomorphic function f : H2 −→ C that
is |kK(N)-invariant. The space of weight k, level N paramodular forms is
denoted Mk(K(N)).

A paramodular form of level N has a Fourier expansion

f(Ω) =
∑

t∈X2(N)semi

a(t; f) e(⟨t,Ω⟩)

with all a(t; f) ∈ C, where the index set is

X2(N)semi = {
(

n r/2
r/2 mN

)
: n,m ∈ N0, r ∈ Z, 4nmN − r2 ≥ 0 }

and ⟨t,Ω⟩ = tr(tΩ). For any subring R of C we let Mk(K(N))(R) denote
the R-module of Mk(K(N))-elements whose Fourier coefficients all lie in R.
This notation also applies to all subspaces of Mk(K(N)) to be introduced
below, e.g., Sk(K(N))+(Z) is the Z-module of paramodular cusp forms that
are Fricke eigenfunctions having eigenvalue 1 and all Fourier coefficients in Z.
An element of Mk(K(N))(R) is said to have unit content if the ideal generated
by its Fourier coefficients is all of R.

The Siegel Φ operator takes any holomorphic function that has a Fourier
series of the form f(Ω) =

∑
t a(t; f) e(⟨t,Ω⟩), summing over rational positive

semidefinite 2 × 2 matrices t, to the function (Φf)(τ) = limλ→+∞ f(( τ 0
0 iλ )).

A paramodular form f in Mk(K(N)) is called a cusp form if Φ(f |kg) = 0 for
all g ∈ Sp2(Q). This is a finite condition because it only needs to be checked
for one representative g of each double coset in Helmut Reefschläger’s decom-
position ([29], and see Theorem 1.2 of [25]), in which a superscript asterisk
denotes matrix inverse-transpose,

Sp2(Q) =
⊔

m∈N:m|N

K(N)u(αm) P2,1(Q), αm = ( 1 m
0 1 ) , u(α) =

(
α 0
0 α∗

)
.

A paramodular form is a cusp form if and only if its Fourier expansion is sup-
ported on X2(N), defined by the strict inequality 4nmN − r2 > 0; this char-
acterization of cusp forms does not hold in general for groups commensurable
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with Sp2(Z), but it does hold for K(N) because the representatives in Reef-
schläger’s decomposition have block diagonal form. The space of paramodular
cusp forms is denoted Sk(K(N)).

2.1.2. Symmetric and antisymmetric forms. The elliptic Fricke involution

αN =
1√
N

(
0 −1
N 0

)
: τ 7−→ − 1

Nτ

normalizes the level N Hecke subgroup Γ0(N) of SL2(Z), and it squares to −1
as a matrix, hence to the identity as a transformation. The corresponding
paramodular Fricke involution is

µN =

(
α∗
N 0
0 αN

)
:

(
τ z
z ω

)
7−→

(
ωN −z
−z τ/N

)
.

The paramodular Fricke involution normalizes the paramodular group K(N),
and it squares to the identity as a transformation. The space Sk(K(N)) decom-
poses as the direct sum of the Fricke eigenspaces for the two eigenvalues ±1,
Sk(K(N)) = Sk(K(N))+ ⊕ Sk(K(N))−. We let ϵ denote either eigenvalue. A
paramodular Fricke eigenform is called symmetric if (−1)kϵ = +1, and anti-
symmetric if (−1)kϵ = −1.

2.1.3. Atkin–Lehner involutions. Let N be a positive integer, and let c be a
positive divisor of N such that gcd(c,N/c) = 1. In this article N is always
squarefree, so c can be any positive divisor of N . For any integers α, β, γ, δ
such that αδc− βγN/c = 1, an elliptic c-Atkin–Lehner matrix is

αc =
1√
c

(
αc β
γN δc

)
.

Especially, for c = 1 we may take α, δ = 1 and β, γ = 0 to get the identity
matrix, and for c = N we may take α, δ = 0 and β, γ = ∓1 to get the Fricke
involution matrix αN = 1√

N

(
0 −1
N 0

)
. By quick calculations, the inverse of

any αc is another α̃c, any product α̃cαc lies in Γ0(N) and so the set of all α̃c

lies in the coset Γ0(N)αc, and this coset also lies in the set of all α̃c, making
them equal. Consequently, αc squares into Γ0(N) and normalizes Γ0(N). A
paramodular c-Atkin–Lehner matrix is

µc = u (α∗
c) =

(
α∗
c 0
0 αc

)
.

The inverse of any µc is another µ̃c, and any product µ̃cµc lies in K(N), so that
the set of all µ̃c lies in the coset K(N)µc and they all give the same action on
paramodular forms, although now the containment is proper. Again µc squares
into K(N), and a blockwise check shows that µc normalizes K(N). For c = 1
we take µ1 = 14. For c = N , the paramodular Fricke involution is µN from the
previous paragraph.
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2.2. Hecke operators

The real symplectic group lies in the larger group GSp+2 (R) defined by the
condition g′Jg = m(g)J for some m(g) ∈ R>0. The weight k slash operator
extends to (f |kg)(Ω) = m(g)2k−3j(g,Ω)−kf(g(Ω)) for g ∈ GSp+2 (R). This is
the arithmetic normalization of the slash operator, as compared to the analytic
normalization that has m(g)k instead, compare Schmidt [32]. Three Hecke op-
erators figure in this article, defined in the usual way by double cosets. In par-
ticular, let T(a, b, c, d) abbreviate the double coset K(N) diag(a, b, c, d)K(N).

• T(p) = T(1, 1, p, p). Because the double coset here is also T(p, p, 1, 1),
used to define the operator T0,1(p) from [32], the two operators are
equal and we make no reference to the notation T0,1(p) in this arti-
cle. In general, T(a, b, c, d), T(c, b, a, d), T(a, d, c, b), T(c, d, a, b) are all
equal, i.e., we may exchange the first and third entries, or the second
and fourth, or both pairs.

• T1(p
2) = T(1, p, p2, p). This is a standard operator, used in [3].

• T1,0(p
2) = T(p, p2, p, 1). This operator is denoted T1,0(p) in [32].

We write it T1,0(p
2) to indicate its multiplier. The operators T1(p

2)

and T1,0(p
2) are conjugate under the Fricke operator, µ−1

N T1(p
2)µN =

T1,0(p
2). In general, µ−1

N T(a, b, c, d)µN = T(b, a, d, c), and then the
right side has three other names as explained just above.

In this article we use T1(p
2) when p ∤ N and T1,0(p

2) when p∥N .

2.2.1. Fourier–Jacobi expansion. The Fourier–Jacobi expansion of a paramod-
ular cusp form f ∈ Sk(K(N)) is

f(Ω) =
∑
m≥1

ϕm(f)(τ, z)ξmN , Ω =

(
τ z
z ω

)
,

with Fourier–Jacobi coefficients

ϕm(f)(τ, z) =
∑

t=

(
n r/2

r/2 mN

)
∈X2(N)

a(t; f)qnζr.

The Fourier–Jacobi coefficients are also written

ϕm(f)(τ, z) =
∑

n,r:4nmN−r2>0

c (n, r;ϕm) qnζr.

Each Fourier–Jacobi coefficient ϕm(f) lies in the space Jcuspk,mN of weight k,
index mN Jacobi cusp forms, whose dimension is known. Jacobi forms will
briefly be reviewed next.

2.3. Jacobi forms

For the theory of Jacobi forms, see [5,10,33]. Let k be an integer and letm be
a nonnegative integer. The complex vector spaces of weight k, index m Jacobi
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forms, Jacobi cusp forms, and weakly holomorphic Jacobi forms consist of
holomorphic functions g : H×C −→ C that have Fourier series representations

g(τ, z) =
∑
n,r

c (n, r; g) qnζr

with all c (n, r; g) ∈ C, and that satisfy transformation laws and constraints on
the support. With the usual notation γ(τ) = (aτ + b)/(cτ + d) and j(γ, τ) =
cτ + d for γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H, the transformation laws are

• g(γ(τ), z/j(γ, τ)) = j(γ, z)ke(mcz2/j(γ, τ))g(τ, z) for all γ ∈ SL2(Z),
• g(τ, z + λτ + µ) = e(−mλ2τ − 2mλz)g(τ, z) for all λ, µ ∈ Z.

To describe the constraints on the support, associate to any integer pair (n, r)
the discriminant

D = D(n, r) = 4nm− r2.

The principal part of g is
∑

n<0 gn(ζ)q
n, where gn(ζ) =

∑
r c (n, r; g) ζ

r, and
the singular part is

∑
D(n,r)≤0 c (n, r; g) q

nζr.

• For the space Jk,m of Jacobi forms, if m > 0 then the sum is taken
over integers n and r such that D ≥ 0, so that in particular n ≥ 0, and
if m = 0 then the sum is taken over n ∈ N0 and r = 0, and we have
elliptic modular forms.

• For the space Jcuspk,m of Jacobi cusp forms, ifm > 0 then the sum is taken
over integers n and r such that D > 0, so that in particular n > 0, and
if m = 0 then the sum is taken over n ∈ N and r = 0, and we have
elliptic cusp forms.

• For the space J!k,m of weakly holomorphic Jacobi forms the sum is taken
over integers n ≫ −∞ and r. For positive index m, the conditions
n≫ −∞ and D ≫ −∞ are equivalent.

When all the Fourier coefficients lie in a ring we also append the ring to
the notation; for example, J!0,m(Z) denotes the Z-module of weight 0, index m
weakly holomorphic forms with integral Fourier coefficients.

2.4. Theta blocks

The theory of theta blocks is due to Gritsenko, Skoruppa, and Zagier [12].
Recall the Dedekind eta function η : H −→ C and the odd Jacobi theta function
ϑ : H× C −→ C,

η(τ) = q1/24
∏
n≥1

(1− qn),

ϑ(τ, z) =
∑
n∈Z

(−1)nq(n+1/2)2/2ζn+1/2

= q1/8(ζ1/2 − ζ−1/2)
∏
n≥1

(1− qnζ)(1− qnζ−1)(1− qn).
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For any d ∈ N define ϑd to be ϑd(τ, z) = ϑ(τ, dz). Given k, ℓ, d1, . . . , dℓ ∈ N,
the resulting theta block is defined to be

TBk[d1, . . . , dℓ] = η2k−ℓ
ℓ∏

j=1

ϑdj .

We will use the following result from [12].

Theorem 2.1 ([12]). Let k,m, ℓ, d1, . . . , dℓ ∈ N. Let B̄2(x) = B2(x−⌊x⌋) where
B2(x) = x2−x+1/6 is the second Bernoulli polynomial. Then TBk[d1, . . . , dℓ] ∈
Jcuspk,m if and only if 12 | k + ℓ, 2m =

∑ℓ
j=1 d

2
j , and

k
12 + 1

2

∑ℓ
j=1 B̄2(djx) > 0

for 0 ≤ x ≤ 1; the positivity needs to be checked only for x ∈ [0, 1/2] ∩ 1
2mZ.

2.5. Gritsenko lifts

The Gritsenko lift, or additive lift, [7] is an injection

Grit : Jcuspk,N −→ Sk(K(N))ϵ where ϵ = (−1)k.

Its definition uses the Eichler–Zagier [5] index raising operator Vℓ : Jk,m −→
Jk,mℓ, extended to weakly holomorphic Jacobi forms [10]. The Gritsenko lift
of ϕ ∈ Jcuspk,N is

Grit(ϕ) ( τ z
z ω ) =

∞∑
m=1

(ϕ|Vm) (τ, z)e(mω).

2.6. Borcherds products

The Borcherds product theorem, quoted here from [23], is a special case of
Theorem 3.3 of [11], which in turn is quoted from [8,10] and relies on the work
of Richard Borcherds. In the theorem, σ0(m) denotes the number of positive
divisors of the positive integer m.

Theorem 2.2. Let N be a positive integer. Let ψ ∈ J!0,N be a weakly holomor-
phic weight 0, index N Jacobi form, having Fourier expansion

ψ(τ, z) =
∑
n,r∈Z
n≫−∞

c(n, r)qnζr where q = e(τ), ζ = e(ζ).

Define

A =
1

24
c(0, 0) +

1

12

∑
r≥1

c(0, r), B =
1

2

∑
r≥1

r c(0, r),

C =
1

2

∑
r≥1

r2c(0, r), D0 =
∑
n≤−1

σ0(|n|)c(n, 0).

Suppose that the following conditions hold:

(1) c(n, r) ∈ Z for all integer pairs (n, r) such that 4nN − r2 ≤ 0,
(2) A ∈ Z,
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(3)
∑

i≥1 c(i
2nm, ir) ≥ 0 for all primitive integer triples (n,m, r) such that

4nmN − r2 < 0 and m ≥ 0.

Then for weight k = 1
2c(0, 0) and Fricke eigenvalue ϵ = (−1)k+D0 the Borcherds

product Borch(ψ) lies in Mk(K(N))ϵ. For sufficiently large λ, for Ω = ( τ z
z ω ) ∈

H2 and ξ = e(ω), the Borcherds product has the following convergent product
expression on the subset { Im(Ω) > λI2 } of H2:

Borch(ψ)(Ω) = qAζBξC
∏

n,m,r∈Z, m≥0
if m = 0 then n ≥ 0

if m = n = 0 then r < 0

(1− qnζrξmN )c(nm,r).

Also, let λ(r) = c(0, r) for r ∈ N0, and recall the corresponding theta block,

TB(λ)(τ, z) = η(τ)λ(0)
∏
r≥1

(ϑr(τ, z)/η(τ))
λ(r) where ϑr(τ, z) = ϑ(τ, rz).

On { Im(Ω) > λI2 }, the Borcherds product is a rearrangement of a convergent
infinite series,

Borch(ψ)(Ω) = TB(λ)(τ, z)ξC exp (−Grit(ψ)(Ω)) .

In the theorem, the divisor of the Borcherds product Borch(ψ) is a sum of
Humbert surfaces with multiplicities, the multiplicities necessarily nonnegative
for holomorphy. Let K(N)+ denote the group generated by K(N) and the
paramodular Fricke involution µN . The sum in item (3) of the theorem is
the multiplicity of the following Humbert surface in the divisor, in which to =(

n r/2
r/2 mN

)
and D = 4nmN − r2 < 0,

HN (to) = HN (−D, r) = K(N)+{Ω ∈ H2 : ⟨Ω, to⟩ = 0 } ⊆ K(N)+\H2.

This surface depends only on the discriminant D and on r, so that we may
take to with m = 1, and furthermore, by work of Gritsenko and Hulek [9], it
depends only on the residue class of r modulo 2N .

3. Construction of the nonlift newforms fN

The following proposition, other than its last statement, was proven in [26]
using the method of integral closure. Here we give a new proof using Borcherds
products, as indicated in the added last statement. This new proof works
directly in the weight 3 space with no need to span the weight 6 space as
the integral closure method did. As a byproduct of this construction, f61 is
clearly congruent to a Gritsenko lift modulo 43, because each G[i] and also
G[1]G[6]/G[2] in the equality just below have integral Fourier coefficients.

Proposition 3.1. There is a nonlift Hecke eigenform f61 ∈ S3(K(61))−(Z)
with unit content, given by a rational function of Gritsenko lifts,

f61 = −9G[1]− 2G[2] + 22G[3] + 9G[4]− 10G[5] + 19G[6]− 43
G[1]G[6]

G[2]
.
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Here G[j] = Grit (TB3(Dj)) for j = 1, . . . , 6 are Gritsenko lifts of theta blocks,
with

D1 = [2, 2, 2, 3, 3, 3, 3, 5, 7] D2 = [2, 2, 2, 2, 3, 4, 4, 4, 7]

D3 = [2, 2, 2, 2, 3, 3, 4, 6, 6] D4 = [1, 2, 3, 3, 3, 3, 4, 4, 7]

D5 = [1, 2, 3, 3, 3, 3, 3, 6, 6] D6 = [1, 2, 2, 2, 4, 4, 4, 5, 6].

The set {f61, G[1], . . . , G[6]} is a basis of S3(K(61)). Each Gritsenko lift G[j]
is also a Borcherds product B[j] = Borch(−(TB3(Dj)|V2)/TB3(Dj)).

The existence of f61 follows from the dimension formula of Ibukiyama for
prime levels p in [16], stated below for convenience. A more general dimension
formula for weights k ≥ 3 and squarefree levels N ≥ 3 is due to Ibukiyama and
Kitayama [19].

Theorem 3.2 (Ibukiyama dimension formula). Let p ≥ 5 be prime. Then

dimS3(K(p)) =
1

2880
(p2 − 1)− 1

+
1

64
(p+ 1)

(
1−

(
−1

p

))
+

5

192
(p− 1)

(
1 +

(
−1

p

))
+

1

72
(p+ 1)

(
1−

(
−3

p

))
+

1

36
(p− 1)

(
1 +

(
−3

p

))
+

1

8

(
1−

(
2

p

))
+

1

5

(
1−

(
5

p

))
+

{
1

6
if p ≡ 5 mod 12

}
.

Ibukiyama’s formula gives dimS3(K(61)) = 7, and the dimension formula
for Jacobi forms in [5],

dim Jcusp3,m =

m−1∑
j=1

(
dimS2+2j(SL2(Z))− floor

(
j2/(4m)

))
,

gives dimJcusp3,61 = 6. We begin spanning S3(K(61)) by using theta blocks

to span Jcusp3,61 . With the Dj from Proposition 3.1, Theorem 2.1 shows that

TB3(Dj) ∈ Jcusp3,61 for j = 1, . . . , 6. By computing Fourier coefficients [35], we

see that the theta blocks TB3(Dj) form a basis of Jcusp3,61 and the Gritsenko lifts

G[j] = Grit (TB3(Dj)) a basis of the Gritsenko lift subspace in S3(K(61)). We
finish spanning S3(K(61)) by using a special case of the Borcherds Products
Everywhere theorem. The following result is Theorem 6.6 of [11] specialized to
the case where the q-order of vanishing is 1, and so we call it a corollary.

Corollary 3.3. Let k,N, ℓ, d1, . . . , dℓ ∈ N. Assume ϕ = TBk[d1, . . . , dℓ] ∈
Jcuspk,N and k + ℓ = 12. Let ψ = −ϕ|V2

ϕ . Then ψ ∈ J!0,N (Z), Borch(ψ) ∈
Mk(K(N))ϵ for ϵ = (−1)k, and Borch(ψ) and Grit(ϕ) have equal first and
second Fourier–Jacobi coefficients.
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For j = 1, . . . , 6 set ψj = −(TB3(Dj)|V2)/TB3(Dj) and B[j] = Borch(ψj).
Thus ψj ∈ J!0,61(Z) and B[j] ∈ M3(K(61)) by the corollary. The divisor of B[j]

consists of Humbert surfaces, the multiplicity of B[j] on H61

(
no ro/2
ro/2 61mo

)
being∑

i≥1 c
(
i2nomo, iro;ψj

)
. The divisors of B[1], B[2], and B[6] in Table 1 show

that f = B[1]B[6]/B[2] is also holomorphic because the Humbert multiplicities
in its divisor are all nonnegative, and so f ∈ M3(K(61))−. In fact f ∈ S3(K(61))
because the divisor of f contains H61(1, 1) and N = 61 is prime, as the following
lemma shows.

Lemma 3.4. Let N be prime and let f ∈ Mk(K(N))± be a Fricke eigenform.
If f vanishes on the Humbert surface HN (1, 1) then f is a cusp form.

Proof. The Humbert surface HN (1, 1) is K(N)+ĤN (to) where to =
(

0 1/2
1/2 N

)
and ĤN (to) = {Ω ∈ H2 : ⟨Ω, to⟩ = 0}. Define t[u] = u′tu for compatibly sized

matrices t and u. To parametrize ĤN (to), choose α ∈ SL2(R) having columns v1
and v2 such that to[v1] = to[v2] = 0; we may take either of α =

(
N 1

−1 0

)
,
(
1 −N
0 1

)
.

The parametrization is

Wα : H×H −→ ĤN (to), (τ, ω) 7−→ τv1v
′
1 + ωv2v

′
2 = α ( τ 0

0 ω )α
′.

Recall that u(α) =
(
α 0
0 α∗

)
. The parametrization shows that because f vanishes

on ĤN (to), also f |ku(α) ( τ 0
0 ω ) vanishes onH×H and so clearly Φ(f |ku(α))(τ) =

limλ→+∞(f |ku(α)) ( τ 0
0 iλ ) is 0 for all τ ∈ H.

As in section 2.1.1, the cusp form condition for f is that Φ(f |kg) = 0 for
one representative g of each double coset K(N)u(αm) P2,1(Q) where 0 < m | N
and αm = ( 1 m

0 1 ). Because N is prime here, the only cases are m = 1, N , with
representatives g = u(α) for α =

(
N 1

−1 0

)
,
(
1 −N
0 1

)
from the previous paragraph;

the former membership holds because α =
(
N+1 −N
−1 1

)
( 1 1
0 1 )

(
1 0

−1 1

)
and u is a

homomorphism, the latter because u ( 1 2N
0 1 ) ∈ K(N). The previous paragraph

has shown that Φ(f |ku(α)) = 0 for these two α, so the proof is complete. □

The Fourier coefficients [35] of G[1], . . . , G[6], and f show them to span
S3(K(61)), so that f is a nonlift. Further, the Fourier coefficients show that
each element of S3(K(61)) is determined by its first and second Fourier–Jacobi
coefficients, so Corollary 3.3 gives the equality of each B[j] = Borch (ψj) and
G[j] = Grit (TB3(Dj)), and the Borcherds products are Gritsenko lifts.

With S3(K(61)) spanned, it is a matter of linear algebra to compute the ac-
tion of T(2) on the basis, assuming we can compute enough Fourier coefficients,
and then to obtain the nonlift eigenform f61 = −9G[1]−2G[2]+22G[3]+9G[4]−
10G[5] + 19G[6] − 43f, a rational function of Gritsenko lifts. By the product
expansion in Theorem 2.2, a Borcherds product Borch(ψ) has integral Fourier
coefficients when ψ does, and noting that f is also a Borcherds product because
Borcherds product formation is an additive-to-multiplicative homomorphism,
f61 has integral Fourier coefficients. Also f61 has unit content, as shown by
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Table 1. Divisors of B[1], B[2], B[6], and f in S3(K(61))

B[1] B[2] B[6] f = B[1]B[6]/B[2]

H61(1, 1) 9 9 9 9
H61(4, 2) 3 7 7 3
H61(5, 35) 7 7 2 2
H61(9, 3) 4 1 1 4
H61(13, 47) 3 0 0 3
H61(16, 4) 0 3 3 0
H61(20, 52) 4 3 1 2
H61(25, 5) 1 0 1 2
H61(36, 6) 0 0 1 1
H61(41, 23) 0 0 1 1
H61(49, 7) 1 1 0 0
H61(56, 42) 1 0 0 1
H61(65, 59) 0 1 1 0

the Fourier coefficients a(( 1 5
5 61 ); f61) = −75 and a(( 1 6

6 61 ); f61) = 107. This
completes the new proof of Proposition 3.1.

The same argument works for N = 73 and 79; we only present the key
elements. Here dimS3(K(73)) = 9 and the lift space dimension is dimJcusp3,73 = 8,

and dimS3(K(79)) = 8 and the lift space dimension is dimJcusp3,79 = 7.

Proposition 3.5. There is a nonlift Hecke eigenform f73 ∈ S3(K(73))−(Z)
with unit content, given by a rational function of Gritsenko lifts

f73 = 9G[1] + 19G[2] + 2G[3]− 13G[4] + 34G[5]

− 15G[6]− 12G[7]− 10G[8]− 39
G[2]G[6]

G[4]
.

Here G[j] = Grit (TB3(Ej)) for j = 1, . . . , 8 are Gritsenko lifts of theta blocks,
with

E1 = [2, 3, 3, 3, 3, 4, 4, 5, 7] E2 = [2, 3, 3, 3, 3, 3, 5, 6, 6]

E3 = [2, 2, 3, 4, 4, 4, 4, 4, 7] E4 = [2, 2, 3, 3, 4, 4, 4, 6, 6]

E5 = [2, 2, 3, 3, 3, 5, 5, 5, 6] E6 = [2, 2, 2, 4, 4, 4, 5, 5, 6]

E7 = [2, 2, 2, 2, 3, 4, 4, 5, 8] E8 = [2, 2, 2, 2, 2, 4, 5, 6, 7].

The set {f73, G[1], . . . , G[8]} is a basis of S3(K(73)). Each Gritsenko lift G[j]
is also a Borcherds product B[j] = Borch(−(TB3(Ej)|V2)/TB3(Ej)).

Proof. The proof follows the pattern of the proof for N = 61 in Proposition 3.1.

The Fourier coefficients a(
(

1 13/2
13/2 73

)
; f73) = 7 and a(

(
1 −7
−7 73

)
; f73) = −6 prove

unit content, and see Table 2 for the holomorphy of f73. □
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Table 2. Divisors of B[2], B[4], B[6], and B[2]B[6]/B[4] in S3(K(73))

B[2] B[4] B[6] B[2]B[6]/B[4]

H73(1, 1) 9 9 9 9
H73(4, 2) 3 7 7 3
H73(8, 64) 1 3 3 1
H73(9, 3) 7 4 1 4
H73(12, 42) 0 1 1 0
H73(16, 4) 0 3 3 0
H73(24, 30) 0 1 3 2
H73(25, 5) 1 0 2 3
H73(36, 6) 2 2 1 1
H73(37, 57) 2 0 0 2
H73(48, 62) 0 0 1 1
H73(65, 49) 1 0 0 1
H73(72, 46) 1 1 0 0
H73(73, 73) 0 2 2 0

The next proposition gives a simpler expression for f79 than was given in [26].
This simpler expression makes the congruence modulo 32 visible.

Proposition 3.6. There is a nonlift Hecke eigenform f79 ∈ S3(K(79))−(Z)
with unit content, given by a rational function of Gritsenko lifts

f79 = 4G[1] + 13G[2]− 15G[3] + 8G[4] + 5G[6]− 11G[7]− 32
G[2]G[3]

G[1]
.

Here G[j] = Grit (TB3(Fj)) for j = 1, . . . , 7 are Gritsenko lifts of theta blocks
with

F1 = [1, 2, 2, 2, 2, 3, 4, 4, 10] F2 = [2, 2, 2, 2, 4, 4, 5, 6, 7]

F3 = [1, 1, 1, 1, 2, 3, 4, 5, 10] F4 = [2, 2, 2, 2, 2, 4, 4, 5, 9]

F5 = [1, 3, 3, 3, 3, 4, 4, 5, 8] F6 = [1, 1, 1, 1, 1, 2, 2, 8, 9]

F7 = [1, 2, 2, 3, 3, 3, 4, 5, 9].

The set {f79, G[1], . . . , G[7]} is a basis of S3(K(79)). Each Gritsenko lift G[j]
is also a Borcherds product B[j] = Borch(−(TB3(Fj)|V2)/TB3(Fj)).

Proof. Again the proof follows from that of Proposition 3.1. The Fourier coef-
ficients a(( 1 6

6 79 ); f79) = 58 and a(
(

1 −7
−7 79

)
; f79) = 101 prove unit content, and

see Table 3 for the holomorphy of f79. □



WEIGHT 3 PARAMODULAR EIGENVALUES AND CONGRUENCES 1011

Table 3. Divisors of B[1], B[2], B[3], and B[2]B[3]/B[1] in S3(K(79))

B[1] B[2] B[3] B[2]B[3]/B[1]

H79(1, 1) 9 9 9 9
H79(4, 2) 7 7 3 3
H79(5, 59) 2 2 2 2
H79(8, 18) 1 1 1 1
H79(9, 3) 1 1 1 1
H79(13, 31) 1 0 1 0
H79(16, 4) 2 2 1 1
H79(20, 40) 1 1 0 0
H79(21, 69) 0 2 0 2
H79(25, 5) 1 1 2 2
H79(36, 6) 0 1 0 1
H79(40, 44) 0 0 1 1
H79(44, 26) 0 1 0 1
H79(45, 19) 0 0 1 1
H79(49, 7) 0 1 0 1
H79(65, 67) 1 1 0 0
H79(76, 32) 0 0 1 1
H79(80, 78) 1 1 0 0
H79(100, 10) 1 0 1 0

4. Classification of congruences to Gritsenko lifts

A few observations will repeatedly be handy for proving Fourier coefficient-
wise congruences of eigenforms, and so we spell them out quickly for the reader’s
convenience even though they are very easy or well known.

• Let p be a rational prime. Let K be a number field. Consider an
element a of OK and the OK-ideal a = ⟨p, a⟩. If p | N(a) then a is
divisible by a prime ideal over p, and in particular a is not all of OK .
If p∥N(a) then a is prime and N(a) = p.

• Let k, ℓ ∈ N be coprime. Let K be a number field, u ⊆ OK an ideal,
and c ∈ OK an element. If ℓc ∈ u then c ∈ u+ kOK .

• The Kummer–Dedekind theorem (if K = Q(a) is a number field with
a ∈ Z, and φ(x) ∈ Z[x] is the minimal polynomial of a, then for all
p ∤ [OK : Z[a]] the factorization of φ modulo pZ[x] gives the factoriza-
tion of p in OK) applies when p2 ∤ disc(φ). We mention this because
the condition that one power of p can divide disc(φ) seems not to be
prominent in textbooks, and we use it several times below.

The next lemma gives the action of the standard Hecke operators on Fourier
coefficients when the bad prime divides the level at most once.
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Lemma 4.1. Let f ∈ Sk(K(N)) with k ≥ 3 and N ∈ N. Let p ∈ N be prime
with p ∤ N or p∥N . If p ∤ N then let T be either of T(p),T1(p

2), and if p∥N
then let T be either of T(p),T1,0(p

2). Then the Fourier coefficients of f |kT are
fixed Z-linear combinations of the Fourier coefficients of f , independent of f .

Proof. For p ∤ N and T = T(p),T1(p
2), see [3], pp.1165–1168.

For p∥N and T = T(p),T1,0(p
2), the result follows from the following for-

mulas, which hold for k ≥ 0 and clearly have integral coefficients for k ≥ 3.
Let M ≡ (N/p)−1 mod p and let a, c ∈ Z be such that ap− cN/p = 1, so that
NM/p ≡ 1 mod p and ap2 − cN = p. Then for any t ∈ X2(N), recalling that
t[u] = u′tu for compatibly sized matrices t and u,

a(t; f |T(p)) = a(pt; f) + pk−2
∑

x mod p

a( 1p t
[(

1 0
−x p

)]
; f)

+ pk−2
∑

y mod p

a( 1p t
[(

p NMy
0 1

)]
; f) + p2k−3a( 1p t; f)

+ pk−3

{
p− 1 if p | 2t12
−1 else

}
a( 1p t

[(
ap N
c p

)]
; f),

and

a(t; f |T1,0(p
2)) = pk−3

∑
x mod p

a(t
[(

1 0
−x p

)]
; f)

+ p3k−6
∑

y mod p

a(t
[(

1 NMy/p
0 1/p

)]
; f)

+ p2k−6
∑

y mod p

p− 1 if p

∣∣∣∣ 2t12(1 + 2cN/p+ 2cy)

+ 2t22c/p

−1 else


· a(t

[(
(cN+p+cNMy)/p N+NMy

c/p 1

)]
; f)

+ p2k−6
∑

x,y mod p

{
p− 1 if p | 2t12My + t22/N

−1 else

}

· a(t
[(

1+NMxy/p NMy
x/p 1

)]
; f).

These formulas are derived from the double coset formulas for T(p) and
T1,0(p

2) when p∥N , as given in [32]. The derivation relies on the following
result: with p,N,M, a, c as above, also consider any x ̸= 0 mod p, and let
x̂ = x−1 mod p, so that xx̂ = 1 mod p. Let S ∈ K(N) be the matrix

S =


ap N Nx̂/p ax̂
c p x̂ cx̂/p

cNMx/p NMx 1 +NMxx̂/p c(NMxx̂/p− 1)/p
aNMx N2Mx/p N(NMxx̂/p− 1)/p a+ aNMxx̂/p


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and let U be the blockwise upper triangular matrix

U =


1 −N/p −Nx̂/p −x̂

−c/p a −ax̂ −cx̂/p
0 0 ap c
0 0 N p

 .

Then their product is the 0-dimensional cusp C0(NMx/p) as defined in [25]
p.449.

SU =


1 0 0 0
0 1 0 0
0 NMx/p 1 0

NMx/p 0 0 1

 .

From here we can upper triangularize all the matrices in the formulas from [32],
and we get the above two Fourier coefficient formulas. The formulas from [32]
give the analytic, scalar invariant normalization of the slash operator. So,
beyond upper triangularizing, the first formula from [32] has to be multiplied
by pk−3 and the second by p2k−6 for the arithmetic normalization. □

In the following lemma the ideal a does not need to be prime.

Lemma 4.2. Let k ≥ 3 and N be positive integers. Let p ∈ N be prime with
p ∤ N or p∥N . If p ∤ N then let T be either of T(p),T1(p

2), and if p∥N
then let T be either of T(p),T1,0(p

2). Let K be a number field. Consider
two T-eigenforms lying in the same Fricke space, and having the same Atkin–
Lehner sign ϵp if p∥N , these being f ∈ Sk(K(N))±(Z), having unit content,
and g ∈ Sk(K(N))±(OK). Let a ⊆ OK be an ideal, and assume that f and g
have congruent Fourier coefficients modulo a,

a(t; f) ≡ a(t; g) mod a for all t ∈ X2(N).

Then f and g have congruent T-eigenvalues modulo a,

λf (T) ≡ λg(T) mod a.

If p ∤ N and f and g are T-eigenforms for both T = T(p) and T = T1(p
2),

or if p∥N and f and g are T-eigenforms for both T = T(p) and T = T1,0(p
2),

then f and g have congruent p-Euler polynomials modulo a.

Proof. By Lemma 4.1, each a(to; f |kT) = λf (T)a(to; f) is a Z-linear combina-
tion of the Fourier coefficients a(t; f). Thus λf (T) lies in Q. Also the charac-
teristic polynomial of T is monic in Z[x], making its roots algebraic integers,
so in fact λf (T) lies in Z. Similarly λg(T) lies in OK . For all t ∈ X2(N),
because a(t; f) and a(t; g) are equivalent modulo a, and because a(t; f |kT) and
a(t; g|kT) are the same Z-linear combination of the a(u; f) and the a(u; g),
they are equivalent modulo a as well. So, because f and g are eigenforms,
(λf (T) − λg(T))a(t; f) = a(t; f |kT) − a(t; g|kT) lies in a. Because f has unit
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content some finite Z-linear combination
∑

t nta(t; f) is 1, and so the eigen-
value difference λf (T) − λg(T) =

∑
t nt(λf (T) − λg(T))a(t; f) lies in a. Thus

λf (T) ≡ λg(T) mod a.
As for the p-Euler polynomials of f and g, for p ∤ N let f |kT(p) = λf (T(p))f

and f |kT1(p
2) = λf (T1(p

2))f . Then the p-Euler polynomial is given in (4.2.16)
of [3],

Qp(f, x) = 1− λf (T(p))x+ (pλf (T1(p
2)) + p2k−5(1 + p2))x2

− p2k−3λf (T(p))x
3 + p4k−6x4,

and this is determined modulo a by λf (T(p)) and λf (T1(p
2)) modulo a. For

a prime p∥N let f |kT(p) = λf (T(p))f and f |kT1,0(p
2) = λf (T1,0(p

2))f , and
recall that ϵp denotes the shared Atkin–Lehner sign of f and g. In this case
the p-Euler polynomial is, see Johnson-Leung and Roberts [20], p.547,

Qp(f, x) = 1− (λf (T(p)) + pk−3ϵp)x+ (pλf (T1,0(p
2)) + p2k−3)x2 + p3k−5ϵpx

3

and this is determined modulo a by λf (T(p)), λf (T1,0(p
2)), and ϵp mod-

ulo a. We remark that this last case can be proved without the formula
for a(t; f |T1,0(p

2)) in Lemma 4.1, because for N = p the bad Euler poly-
nomial only depends upon λf (T(p)) and ϵp. Indeed, we have the relation
pk−3λf (T(p))ϵp + λf (T1,0(p

2)) + p2k−5 + p2k−6 = 0. The reference for this
relation for local representations is Roberts and Schmidt [30], p.248. □

With the needed supporting results in place, we can establish the main
results of this section, at levels N = 61, 73, 79. Each nonlift eigenform fN
takes the form co · G + mf where co is a vector of rational integers, G is a
vector of Gritsenko lifts, m is a rational integer, and f ∈ S3(K(N)) has rational
integer Fourier coefficients; specifically m61,m73,m79 = −43,−39,−32 from
Propositions 3.1, 3.5, and 3.6. We work in the number field K = Q(a) where a
is any root of an irreducible factor of the characteristic polynomial of T(2) on
the Gritsenko lift space. With do a vector of elements of Q[a] = K computed
by a machine search, and with G the vector of Gritsenko lifts G[j] from earlier,
the linear combination g(a) = do ·G is a Gritsenko lift T(2) eigenform, denoted
g(a) because it depends on the chosen root a. To find the congruences between
the nonlift eigenform fN and a scalar multiple of g(a) modulo an OK-ideal over
a rational prime p | m, we seek to rescale do to a vector of algebraic integers
that is p-minimal, meaning that the smallest exponent of p in the norms of the
vector entries is as small as possible, we hope 0. To do so, we first rescale do
by a positive rational integer to get entries in OK , then divide it by its entry
whose norm is divisible by the lowest power of p, and then try to scale it back
by a rational integer coprime to p to make its entries algebraic integers again.
With do so rescaled, we test for n = 1, . . . , p−1 whether the entries of co−ndo
are all algebraic integer multiples of some algebraic number w whose norm is
a multiple of p; either w is the difference of the T(2)-eigenvalues or it is one
of the entries of co − ndo. If so, then fN and ng are congruent modulo the
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ideal ⟨m,w⟩. This strategy suffices to prove the three theorems to follow. The
tables accompanying these theorems show the rescaled vectors do, and we give
the values w that are not eigenvalue differences, to make our computations
reproducible. Because such a w is an ideal generator at level 79, it occurs in
the statement of the third theorem.

Theorem 4.3. Let G ⊆ S3(K(61)) be the subspace of Gritsenko lifts. The
characteristic polynomial of T(2) on G is irreducible over Q,

q(x) = x6 − 29x5 + 322x4 − 1714x3 + 4471x2 − 5205x+ 2026.

Let a be a root of q and let K = Q(a). With reference to the elements dj(a)
of K in Table 4 and to the Gritsenko lifts G[j] from Proposition 3.1, consider
an element of G(K),

g(a) =

6∑
j=1

dj(a)G[j].

Then g(a) lies in G(OK), and it is a T(2)-eigenform with eigenvalue a, and it
is an eigenform of T(p) and T1,0(p

2) for all primes p. The OK-ideal

a = ⟨43, a+ 7⟩
is prime. The Fourier coefficients and the Euler polynomials of f61 and g(a)
are congruent modulo a. The ideal a is the only (proper) OK-ideal that gives a
congruence between the Euler polynomials of f61 and g(a).

Table 4. Coefficients of Gritsenko lifts for N = 61

j cj dj(a)

1 −9 515
2 − 2377

4 a+ 443a2 − 269
2 a3 + 17a4 − 3

4a
5

2 −2 1899
8 − 7813

16 a+ 1223
4 a2 − 649

8 a3 + 39
4 a

4 − 7
16a

5

3 22 − 305
2 + 1697

4 a− 359a2 + 237
2 a3 − 16a4 + 3

4a
5

4 9 −396 + 855a− 596a2 + 174a3 − 22a4 + a5

5 −10 −140 + 215a− 97a2 + 17a3 − a4

6 19 −24

Proof. The Gritsenko lift space G has basis {G[j] : j = 1, . . . , 6}. We can
compute enough Fourier coefficients of the G[j] (see [35]) to give the matrix
of T(2) on G for the basis, acting from the left on column vectors of C6,

M =


9 0 4 −1 4 1

−6 1 −4 −4 0 0
3 0 8 2 2 0
3 4 0 11 −4 −2

−8 0 −8 −1 −3 −1
−1 −4 2 −4 0 3

 .
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The characteristic polynomial q(x) = det(xI −M) is as stated.
Each dj(a) lies in OK , as can be confirmed by computer software, and each

G[j] lies in G(Z), so g(a) lies in G(OK). The vector (d1(a), . . . , d6(a)), viewed as
a column, lies in null (aI −M), and so g(a) is a T(2)-eigenform in G(OK) with
eigenvalue a. The characteristic polynomial of T(2) is separable because its
discriminant disc(q) = 214·36·1892022169 is nonzero. So the eigenspaces of T(2)
are one-dimensional, and consequently g(a) is an eigenform of every Hecke
operator that commutes with T(2). The commutativity is automatic for T(p)
and T1,0(p

2) with p ̸= 2. For T1,0(4), the commutator [T(2),T1,0(4)] consists of
level lowering operators by Proposition 6.21 in [30] and so [T(2),T1,0(4)] = 0 on
S3(K(61)) because 61 is prime and S3(K(1)) = {0}. Thus g(a) is an eigenform
of all the stated Hecke operators.

The reduction of q(x) modulo 43 is

q(x) ≡ (x+ 7)(x+ 25)(x+ 30)(x3 + 38x2 + 13x+ 12) mod 43,

and because 43 ∤ disc(q), The Kummer–Dedekind theorem says that the OK-
ideal a = ⟨43, a + 7⟩ is prime, and more generally that a, ⟨43, a + 25⟩, and
⟨43, a+ 30⟩ are the norm-43 ideals of OK .

The values cj in Table 4 are such that f61 = −43f+
∑6

j=1 cjG[j] in Propo-
sition 3.1. Thus

f61 − g(a) = −43f+

6∑
j=1

(cj − dj(a))G[j].

For j = 1, . . . , 6 we compute that 1616(cj −dj(a)) ∈ ⟨a+7⟩. The second bullet
from the beginning of this section with k = 43, ℓ = 1616, u = ⟨a + 7⟩, and
c = cj − dj(a) gives cj − dj(a) ∈ ⟨43, a+7⟩ = a. The Fourier coefficients of 43f
lie in a as well. Thus f61 ≡ g(a) mod a at the level of Fourier coefficients.
Because S3(K(61)) = S3(K(61))− and 61 is prime, Lemma 4.2 says that all
p-Euler polynomials of f61 and g(a) are congruent modulo a.

The matrix of T(3) on G is given in [35]. Using it along with the matrix
of T(2) we compute two eigenvalue differences,

λg(a)(T(2))− λf61(T(2)) = a+ 7

λg(a)(T(3))− λf61(T(3)) =
1495
48 − 4313

96 a+ 691
24 a

2 − 349
48 a

3 + 19
24a

4 − 1
32a

5 + 3.

The norm of any ideal containing these eigenvalue differences divides their
norms,

N
(
λg(a)(T(2))− λf61(T(2))

)
= 29 · 43 · 101

N
(
λg(a)(T(3))− λf61(T(3))

)
= 52 · 19 · 43 · 139,

and therefore divides the greatest common divisor 43 of these norms, and there-
fore, because the ideal is proper, equals 43. So the ideal is one of the norm-43
ideals a = ⟨43, a+7⟩, ⟨43, a+25⟩, ⟨43, a+30⟩, and it contains a+7, so it is a. □
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The congruence of eigenvalues modulo a prime ideal above 43 is also proven
in [4], which also contains a proof of a new type of congruence above 19,
discovered by Buzzard and Golyshev, of f61 to a Yoshida lift.

Theorem 4.4. Let G ⊆ S3(K(73)) be the subspace of Gritsenko lifts. The
characteristic polynomial q of T(2) on G factors over Q as q = q1q7, where its
irreducible factors q1 and q7 are

q1(x) = x− 9,

q7(x) = x7 − 30x6 + 357x5 − 2157x4 + 7034x3 − 12145x2 + 9964x− 2832.

With reference to the integers d1,j in Table 5 and to the Gritsenko lifts G[j]
from Proposition 3.5, consider an element of G(Z),

g1 =

8∑
j=1

d1,jG[j].

Then g1 is a T(2)-eigenform with eigenvalue 9, and it is an eigenform of T(p)
and T1,0(p

2) for all primes p. The Fourier coefficients and the Euler polyno-
mials of f73 and g1 are congruent modulo 3Z. The only (proper) Z-ideal that
gives a congruence between the Euler polynomials of f73 and g1 is 3Z.

Let a be a root of q7 and K = Q(a). With reference to the elements d7,j(a)
of K in Table 5 and to the Gritsenko lifts G[j] from Proposition 3.5, consider
an element of G(K),

g7(a) =

8∑
j=1

d7,j(a)G[j].

Then g7(a) lies in G(OK), and it is a T(2)-eigenform with eigenvalue a, and
it is an eigenform of T(p) and T1,0(p

2) for all primes p. The OK-ideals

a = ⟨3, a⟩, b = ⟨13, a+ 6⟩

are prime. The Fourier coefficients and the Euler polynomials of f73 and g7(a)
are congruent modulo a and modulo b. The only prime-power OK-ideals that
give congruences between the Euler polynomials of f73 and g7(a) are a and b.

Proof. Similarly to the proof of Theorem 4.3, the matrix M of T(2) on G for
the basis {G[j] : j = 1, . . . , 8} is

M =



8 0 3 −4 −2 −2 4 2
−4 1 −1 −2 −3 0 −4 −5
0 0 6 0 −1 0 0 −1
2 2 5 8 3 2 2 1
2 4 −1 6 8 8 −4 −5

−4 −4 −8 −4 −1 −4 2 7
−2 0 −3 4 3 2 1 −1
−3 −4 −7 −6 −4 −8 4 11


.
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Table 5. Coefficients of Gritsenko lifts for N = 73

j cj d1,j d7,j(a)

1 9 −3
− 632307

4 + 8480021
16 a− 36446543

64 a2 + 16486531
64 a3

− 442583
8 a4 + 357943

64 a5 − 13671
64 a6

2 19 −2
− 247387

2 + 2906781
8 a− 9639367

32 a2 + 3516515
32 a3

− 77947
4 a4 + 52719

32 a5 − 1703
32 a6

3 2 −1
134939

4 − 1626701
16 a+ 6689239

64 a2 − 2996715
64 a3

+ 80271
8 a4 − 64895

64 a5 + 2479
64 a6

4 −13 2
− 280607

2 + 3673513
8 a− 15573571

32 a2 + 6924839
32 a3

− 181543
4 a4 + 142859

32 a5 − 5307
32 a6

5 34 1
411139

4 − 4124773
16 a+ 16534783

64 a2 − 7232243
64 a3

+ 187815
8 a4 − 146535

64 a5 + 5399
64 a6

6 −15 3
850479

4 − 12504265
16 a+ 51374171

64 a2 − 22172735
64 a3

+ 569099
8 a4 − 441443

64 a5 + 16243
64 a6

7 −12 3
648207

4 − 8826201
16 a+ 37654939

64 a2 − 16649519
64 a3

+ 434027
8 a4 − 340515

64 a5 + 12643
64 a6

8 −10 2 −10072

The characteristic polynomial q(x) = det(xI −M) = q1(x)q7(x) is as stated.
The vector (d1,1, . . . , d1,8) lies in null(9I−M), and so g1 is a T(2)-eigenform

with eigenvalue 9. The characteristic polynomial q of T(2) is separable because
its discriminant disc(q) = 236 · 33 · 52 · 13 · 192 · 37 · 101 · 30931 is nonzero,
and so g1 is an eigenform of all the stated Hecke operators as in the proof of
Theorem 4.3.

The values cj in Table 5 are such that f73 = −39f+
∑8

j=1 cjG[j] in Propo-
sition 3.5. Thus

f73 − g1 = −39f+

8∑
j=1

(cj − d1,j)G[j].

Table 5 shows that the coefficients cj − d1,j all lie in 3Z, as do the Fourier
coefficients of −39f, and so the Fourier coefficients of g1 and f73 are congruent
modulo 3Z. Because S3(K(73)) = S3(K(73))− and 73 is prime, Lemma 4.2 says
that all p-Euler polynomials of f73 and g1 are congruent modulo 3Z. Again the
matrix of T(3) on G is given in [35]. The eigenvalue differences λg1(T(p)) −
λf73(T(p)) for p = 2, 3 are

λg1(T(2))− λf73(T(2)) = 9 + 6 = 15 = 3 · 5,
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λg1(T(3))− λf73(T(3)) = 4 + 2 = 6 = 2 · 3.

Any ideal containing these contains 3Z, so it is 3Z.
Now let a be a root of q7 and K = Q(a). Each d7,j(a) lies in OK and each

G[j] lies in G(Z), so g7(a) lies in G(OK). The vector (d7,1(a), . . . , d7,8(a)) lies
in null(aI −M), and so g7(a) is a T(2)-eigenform in G(OK) with eigenvalue a.
Because the roots of q7 are distinct, g7(a) is an eigenform of all the stated
Hecke operators.

Because disc(q7) = 224 · 3 · 13 · 192 · 37 · 101 · 30931 is divisible by 3 only once,
the Kummer–Dedekind theorem says that the factorization of q7 modulo 3,

q7(x) ≡ x(x+ 2)2(x4 + 2x3 + x+ 1) mod 3,

determines the factorization 3OK = ⟨3, a⟩⟨3, a + 2⟩2⟨3, a4 + 2a3 + a + 1⟩, the
first two prime ideals on the right side having norm 3 and the third having
norm 34. Similarly the factorization of q7 modulo 13,

q7(x) ≡ (x+ 6)2(x5 + 10x4 + 6x3 + 11x2 + 4x+ 8) mod 13,

determines the factorization 13OK = ⟨13, a+ 6⟩2⟨13, a5 + 10a4 + 6a3 + 11a2 +
4a + 8⟩. Here ⟨3, a⟩ and ⟨13, a + 6⟩ are the ideals a and b of the theorem, so
those ideals are prime as claimed.

The values cj in Table 5 are such that f73 = −39f+
∑8

j=1 cjG[j] in Propo-
sition 3.5. Thus

f73 − g7(a) = −39f+

8∑
j=1

(cj − d7,j(a))G[j].

Let

w = 134943
2 − 1626701

8 a+ 6689239
32 a2 − 2996715

32 a3 + 80271
4 a4 − 64895

32 a5 + 2479
32 a6.

(How we found this w will be explained immediately after the proof.) This
element of OK has norm

N(w) = −27 · 3 · 3919 · 1941571 · 8583739212883,

and so by the first bullet at the beginning of this section, the ideal ⟨3, w⟩
is one of the norm-3 OK-ideals, ⟨3, w⟩ = a = ⟨3, a⟩ or ⟨3, w⟩ = ⟨3, a + 2⟩.
Further, 32w does not lie in ⟨3, a + 2⟩, as one can see by replacing a by 1
in 32w and then reducing modulo 3. Therefore ⟨3, w⟩ = a. Now set ℓ =
130627630879749647154734. For j = 1, . . . , 8, compute ℓ(cj + 2d7,j(a)) ∈ ⟨w⟩.
The second bullet from the beginning of this section, with k = 3, ℓ as given,
u = ⟨w⟩, and c = cj + 2d7,j(a) gives cj + 2d7,j(a) ∈ ⟨3, w⟩ = a, and it follows
that cj − d7,j(a) ∈ a. The Fourier coefficients of −39f lie in a as well. Thus
f73 ≡ g7(a) mod a at the level of Fourier coefficients. Turning to the b =
⟨13, a+ 6⟩ congruence, we evaluate the norm

N(a+ 6) = 9270300 = 22 · 3 · 52 · 13 · 2377.
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Set ℓ = 356550. For j = 1, . . . , 8, compute ℓ(cj + 12d7,j(a)) ∈ ⟨a + 6⟩. The
second bullet from the beginning of this section, with k = 13, ℓ as given,
u = ⟨a+6⟩, and c = cj +12d7,j(a) gives cj +12d7,j(a) ∈ ⟨13, a+6⟩ = b. Thus,
similarly to just above, f73 ≡ g7(a) mod b at the level of Fourier coefficients.
As in the proof of Theorem 4.3, this proves that all p-Euler polynomials of f73
and g7(a) are congruent modulo a and modulo b.

The norms of possible prime-power congruence ideals are limited to 3 or 13
by computing the norms from OK to Z of two eigenvalue differences and of
their sum,

N
(
λg7(a)(T(2))− λf73(T(2))

)
= N(a+ 6)

= 22 · 3 · 52 · 13 · 2377,

N
(
λg7(a)(T(3))− λf73(T(3))

)
= N

(
241
4 − 3171

16 a+ 13965
64 a2 − 6297

64 a3 + 167
8 a4 − 133

64 a
5 + 5

64a
6 + 2

)
= 22 · 3 · 13 · 195809,

N
(
λg7(a)(T(2))− λf73(T(2)) + λg7(a)(T(3))− λf73(T(3))

)
= 36 · 13 · 61 · 4793,

because these norms have greatest common divisor 3 · 13. If the congruence
ideal has norm 3 then because it contains the eigenvalue difference a + 6 it
contains ⟨3, a+6⟩ = ⟨3, a⟩ = a, so it is a. Similarly, if the congruence ideal has
norm 13 then it is ⟨13, a+ 6⟩ = b. □

The integers d1,j and the polynomials d7,j in Table 5 were determined simi-
larly to the polynomials dj in Table 4. The value w in the proof was found by
testing the set {cj + nd7,j(a)} for various integers n until one element of the
set divided all the others in OK ; w came from n = 2 and then j = 3.

We remark that the Gritsenko lift with T(2)-eigenvalue given by q1 arises
from the elliptic newform 73.4.a.a at the database LMFDB [22, Modular Form
73.4.a.a] and similarly for q7 and 73.4.a.b [22, Modular Form 73.4.a.b] .

Theorem 4.5. Let G ⊆ S3(K(79)) be the subspace of Gritsenko lifts. The
characteristic polynomial q of T(2) on G factors over Q as q = q2q5, where its
irreducible factors q2 and q5 are

q2(x) = x2 − 11x+ 26,

q5(x) = x5 − 27x4 + 261x3 − 1077x2 + 1766x− 964.

Let a be a root of q2 and K = Q(a). With reference to the elements d2,j(a)
of K in Table 6 and to the Gritsenko lifts G[j] from Proposition 3.6, consider

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/73/4/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/73/4/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/73/4/a/a/
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an element of G(K),

g2(a) =

7∑
j=1

d2,j(a)G[j].

Then g2(a) lies in G(OK), and it is a T(2)-eigenform with eigenvalue a, and
it is an eigenform of T(p) and T1,0(p

2) for all primes p. The OK-ideal

a = ⟨2, a+ 1⟩

is prime, and the Fourier coefficients and the Euler polynomials of f79 and g2(a)
are congruent modulo a. The only (proper) ideal that gives a congruence between
the Euler polynomials of f79 and g2(a) is a.

Let b be a root of q5 and L = Q(b). With reference to the elements d5,j(b)
of L in Table 6 and to the Gritsenko lifts G[j] from Proposition 3.6, consider
an element of G(L),

g5(b) =

7∑
j=1

d5,j(b)G[j].

Then g5(b) lies in G(OL), and it has a T(2)-eigenform with eigenvalue b, and
it is an eigenform of T(p) and T1,0(p

2) for all primes p. Let w = 35
4 − 435

8 b+
565
16 b

2 − 25
4 b

3 + 5
16b

4, an element of OL. The OL-ideal

b = ⟨8, w⟩

is the cube of a prime OL-ideal over 2 of norm 4. The Fourier coefficients
of f79 and 5g5(b) are congruent modulo b, and the Euler polynomials of f79
and g5(b) are congruent modulo b. Every (proper) ideal that gives a congruence
between the Euler polynomials of f79 and g5(b) divides b.

Table 6. Coefficients of Gritsenko lifts for N = 79

j cj d2,j(a) d5,j(b)

1 4 5− a 103
2 − 257

4 b+ 185
8 b2 − 3b3 + 1

8b
4

2 13 −8 + a 199
4 − 435

8 b+ 257
16 b

2 − 7
4b

3 + 1
16b

4

3 −15 6− a − 19
4 + 87

8 b−
113
16 b

2 + 5
4b

3 − 1
16b

4

4 8 3− a 3− b

5 0 9− a 10− 9b+ b2

6 5 4− a 4− b

7 −11 −18 + 3a − 203
4 + 443

8 b− 257
16 b

2 + 7
4b

3 − 1
16b

4
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Proof. Similarly to the proof of Theorem 4.3, the matrix M of T(2) on G for
the basis {G[j] : j = 1, . . . , 7} is

M =



0 −2 −2 −2 −8 −2 −6
−4 2 0 −3 −7 −2 −5
3 0 9 1 2 2 4
0 −1 0 11 −1 −6 −1
3 0 1 2 9 2 5
0 −1 0 7 −1 −3 −1
5 2 1 −3 8 6 10


The characteristic polynomial q(x) = det(xI −M) = q2(x)q5(x) is as stated.

Let a be a root of q2 and K = Q(a). Each d2,j(a) lies in OK and each G[j]
lies in G(Z), so g2(a) lies in G(OK). The vector (d2,1(a), . . . , d2,7(a)) lies in
null(aI −M), and so g2(a) is a T(2)-eigenform in G(OK) with eigenvalue a.
The characteristic polynomial q of T(2) is separable because its discriminant
disc(q) = 226 · 173 · 592 · 4787257 is nonzero, and so g2(a) is an eigenform of all
the stated Hecke operators as in the proof of Theorem 4.3.

The reduction of q2(x) modulo 2 is q2(x) ≡ x(x + 1) mod 2, and because 2
does not divide disc(q2) = 17, The Kummer–Dedekind theorem says that the
OK-ideal a = ⟨2, a+ 1⟩ is prime.

The values cj in Table 6 are such that f79 = −32f+
∑7

j=1 cjG[j] in Propo-
sition 3.6. Thus

f79 − g2(a) = −32f+

7∑
j=1

(cj − d2,j(a))G[j].

For j = 1, . . . , 7 we compute that 53(cj − d2,j(a)) ∈ ⟨a + 5⟩. The second
bullet from the beginning of this section, with k = 2, ℓ = 53, u = ⟨a+ 5⟩, and
c = cj−d2,j(a) gives cj−d2,j(a) ∈ ⟨2, a+5⟩ = a. The Fourier coefficients of−32f
lie in a as well. Thus f79 ≡ g2(a) mod a at the level of Fourier coefficients. As
in the proof of Theorem 4.3, this proves that all p-Euler polynomials of f79
and g2(a) are congruent modulo a.

The possible congruence ideals for f79 and g2(a) are limited to norm-2 ideals
by computing the norm of an eigenvalue differences and then a second eigen-
value difference that is already a rational integer,

N
(
λg2(a)(T(2))− λf79(T(2))

)
= N(a+ 5) = 2 · 53,

λg2(a)(T(3))− λf79(T(3)) = 11− (−5) = 16 = 24,

because the greatest common divisor of these values is 2. Any such congruence
ideal also contains the eigenvalue difference a+ 5, so it contains ⟨2, a+ 5⟩ = a,
and so it is a.

Let b be a root of q5 and L = Q(b). Each d5,j(b) lies in OL and each G[j]
lies in G(Z), so g5(a) lies in G(OL). The vector (d5,1(b), . . . , d5,7(b)) lies in
null(bI −M)., and so g5(b) is a T(2)-eigenform in G(OL) with eigenvalue b.
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Because the roots of q5 are distinct, g5(b) is an eigenform of all the stated
Hecke operators.

Similarly to just above,

f79 − 5g5(b) = −32f+

7∑
j=1

(cj − 5d5,j(b))G[j].

Recall the element w of OL and the ideal b = ⟨8, w⟩ from the statement of the
theorem. Computer software says that b is the cube of the prime, norm 4 ideal
⟨2, v⟩ over 2, where v = 1

16b
4− 5

4b
3+ 129

16 b
2− 151

8 b+ 51
4 , and so b has norm 64 as

also can be confirmed directly. For j = 1, . . . , 7, we compute 635(cj−5d5,j(b)) ∈
⟨w⟩. The second bullet from the beginning of this section, with k = 8, ℓ = 635,
u = ⟨w⟩, and c = cj − 5d5,j(b) give cj − 5d5,j(b) ∈ ⟨8, w⟩ = b. The Fourier
coefficients of −32f lie in b as well. Thus f79 ≡ 5g5(b) mod b at the level of
Fourier coefficients. As in the proof of Theorem 4.3, and noting that scaling
g5(b) by 5 has no effect on its Hecke eigenvalues or Euler polynomials, this
proves that all p-Euler polynomials of f79 and g5(a) are congruent modulo b.

The possible congruence ideals for f79 and g5(a) are limited to divisors of b
by computing the norms of two eigenvalue differences,

N
(
λg5(b)(T(2))− λf79(T(2))

)
= N(b+ 5)

= 28 · 349,

N
(
λg5(b)(T(5))− λf79(T(5))

)
= N

(
1884
16 − 1582

16 b+ 401
16 b

2 − 36
16b

3 + 1
16b

4 − 3
)

= 26 · 5 · 72 · 67,
because the greatest common divisor of these norms is 64, and so the congruence
ideal has norm dividing 64. Letting c denote the congruence ideal, also the least
common multiple of b and c is a congruence ideal, so its norm divides 64 = N(b),
so the least common multiple is b. That is, c | b. □

The w in this proof was found similarly to the N = 73 case, this time with
n = 5 and j = 3. The Gritsenko lifts with T(2)-eigenvalues given by q2 and q5
arise from the LMFDB elliptic newforms 79.4.a.a [22, Modular Form 79.4.a.a]
and 79.4.a.b [22, Modular Form 79.4.a.a].

5. Computation of eigenvalues

Throughout this section N is a positive integer, f an element of Mk(K(N)),
and p a prime. Further, a, b, c are integers such that a matrix and two of its
SL2(Q(

√
p))-equivalents are positive,

s =

(
a b
b c/N

)
, qs =

(
a/p b
b pc/N

)
, ps =

(
pa b
b c/(pN)

)
.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/79/4/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/79/4/a/b/
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Let ϕs(τ) = τs for τ ∈ H, and let ϕ∗s denote its pullback. Proposition 5.2 to
follow gives initial formulas for the restrictions ϕ∗s(f |kT(p)) and ϕ∗s(f |kT1(p

2))
when p ∤ N , and similarly Proposition 5.5 for ϕ∗s(f |kT(p)) and ϕ∗s(f |kT1,0(p

2))
when p∥N . Each of these initial formulas consists of finitely many finite sums,
but some of the sums are computationally intractable. Propositions 5.3 and 5.6
show that various sums in the initial formulas can be replaced by sums over
smaller index sets, making them tractable after all. Some ideas from this section
were introduced in [3] but complete details were not given there. Specifically, [3]
states the first half of Proposition 5.2, the part about the Hecke operator T(p),
but only alludes briefly to the second half, the part about T1(p

2). The parts
of Proposition 5.3 that speed up the second half of Proposition 5.2 are new,
specifically the third formula in part (a), the second in part (b), and the second
in part (d); in particular we prove the second formula in part (d) to illustrate
ideas not present in [3]. Propositions 5.4 and 5.5, which give results for bad
primes, are also new. The completeness of these propositions is needed to
reproduce the computational results of [3] and of this paper.

Lemma 5.1. With reference to the matrix s just above, define a map from the
complex upper half plane to the 2-dimensional Siegel upper half space,

ϕs : H −→ H2, ϕs(τ) = τs.

Let R ⊆ C be a subring. Then the pullback of ϕs is a ring homomorphism from
the graded ring of Siegel paramodular forms of level N with coefficients in R
to the graded ring of elliptic modular forms of level det(s)N with coefficients
in R,

ϕ∗s : M(K(N))(R) −→ M(Γ0(det(s)N))(R)

given by

(ϕ∗sf)(τ) = f(τs).

The map ϕ∗s multiplies weights by 2 and takes cusp forms to cusp forms.

The elliptic modular form ϕ∗sf is the restriction of f to the curve ϕs(H),
also called the restriction of f under s.

Proof. The proof follows from a straightforward modification of a result of
Poor–Yuen [24, Proposition 5.4]. □

Let the paramodular form f ∈ Mk(K(N)) have Fourier expansion (in which
⟨t,Ω⟩ = tr(tΩ))

f(Ω) =
∑

t∈X2(N)semi

a(t; f) e(⟨t,Ω⟩).

Its restriction ϕ∗sf ∈ M2k(Γ0(det(s)N)) has Fourier expansion (in which q =
e(τ))

(ϕ∗sf)(τ) =

∞∑
n=0

( ∑
t: ⟨s,t⟩=n

a(t; f)

)
qn.



WEIGHT 3 PARAMODULAR EIGENVALUES AND CONGRUENCES 1025

Furthermore, if f is slashed with a block upper triangular matrix (A B
0 D ) ∈

GSp+4 (Q) with similitude µ = det(AD)1/2 then the restriction of the resulting
function is

(1)

ϕ∗s(f |k(A B
0 D ))(τ) = (f |k(A B

0 D ))(sτ)

= det(AD)k−3/2 det(D)−kf(AsD−1τ +BD−1)

= det(A)k det(AD)−3/2
∑

n∈Q≥0

( ∑
t: ⟨AsD−1,t⟩=n

a(t; f)e
(
⟨BD−1, t⟩

))
qn.

In order to compute eigenvalues by the technique of restriction to a modular
curve, we apply a restriction map ϕ∗s to the eigenvalue equation λf (T )f =
f |T =

∑m
j=1 f |tj . We assume T = K(N) diag(a, b, c, d)K(N) =

⊔m
j=1 K(N)tj

where the tj are upper block triangular and m = deg T is the number of cosets
in K(N)\T . Using equation (1) for each term ϕ∗s(f |tj), the restricted eigenvalue
equation

(2) λf (T )ϕ
∗
s(f) =

m∑
j=1

ϕ∗s(f |tj)

uniquely determines the eigenvalue λf (T ) as long as the elliptic modular form
ϕ∗s(f) does not vanish identically. Indeed, each successive power of q = e(τ)
in equation (2) provides an independent evaluation of the eigenvalue λf (T )
and is thus useful for checking computational infrastructure. For efficiency,
the coefficients of equation (2) are evaluated over a finite field Fℓ rather than
over Q.

Let T have a similitude µ that is a p-power. The factors e
(
⟨BD−1, t⟩

)
in equation (1) are µ-th roots of unity. For simplicity assume λf (T ) ∈ Z.
Choose an auxiliary prime ℓ that splits completely in the cyclotomic field
K = Q(e(1/µ)). By the Kummer–Dedekind theorem, the µ-th cyclotomic
polynomial Φµ splits in Fℓ. Let r ∈ Z give a root of Φµ in Fℓ. In K we
know that N (r − e(1/µ)) = Φµ(r) ≡ 0 mod ℓ, so that there is a prime ideal
m in OK above ⟨r − e(1/µ), ℓ⟩ by the first bullet at the beginning of the pre-
vious section. We evaluate the coefficients of equation (2) over the finite field
OK/m ∼= Fℓ, using the congruence e(1/µ) ≡ r mod m to reduce the compu-
tation to integers, and obtain λf (T ) mod ℓ. For sufficiently large ℓ, the gen-
eral bound |λf (T )| ≤ µk−3 deg T , compare Proposition 6.7.1 in [3], determines
λf (T ) ∈ Z.

The main computational advantage of restricting to modular curves, as op-
posed to using the formulae of Lemma 4.1, is that many terms in equation (2)
may be omitted if we project onto integral powers of q after a partial summa-
tion. The speed-ups in Propositions 5.3 and 5.6 prove that we may partially
sum over index sets that are roughly a factor of p smaller than deg T and still
preserve equality for integral powers of q in equation (2).
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A secondary benefit is that we may not need to compute Fourier coeffi-
cients of the eigenform f . For example, in section 3 each eigenform was given
as a rational function of Gritsenko lifts G[i]. The specializations ϕ∗s(G[i]|tj)
are computed from the Fourier coefficients of these Gritsenko lifts, which may
be reduced to computing Fourier coefficients of Jacobi forms. It is also com-
putationally beneficial to use single rather than multiple variable power series.
The s actually used to restrict f can be selected from a number of candidates for
speed and to make the q-order of ϕ∗s(f) small. For N = 61 and good primes p,

we used s = ( 122 11
11 1 ), which gave q-order 2; for p = 61, we used s =

(
13 2
2 19/61

)
with q-order 1. For N = 73, 79, in all cases we used s = ( 146 17

17 2 ), ( 158 47
47 14 ),

respectively, each with q-order 3.

We now write speed-up theorems for computing the restrictions of f |kT(p)
and f |kT1(p

2) for p ∤ N and of f |kT(p) and f |kT1,0(p
2) for p∥N . Recall that

these Hecke operators are defined as slashes by double cosets,

T(p) = K(N) diag(1, 1, p, p)K(N)

T1(p
2) = K(N) diag(1, p, p2, p)K(N)

T1,0(p
2) = K(N) diag(p, p2, p, 1)K(N).

See [3, 32] for the decompositions of these double cosets into right cosets.
For the case p ∤ N , we use the single coset decomposition from [3] and the

following result after applying (1).

Proposition 5.2. Let N, f, p, s, qs, ps be as at the beginning of this section. Let

p ∤ N . For any integers i, j, k let ti,j,k =
(

i/p j/p
j/p k/p

)
, ui,j,k =

(
i/p2 j/p

j/p k/p2

)
, and

vi = pu0,ia,i(ia+2b). The restrictions of f |kT(p) and f |kT1(p
2) under s are

ϕ∗s(f |kT(p))(τ)

= p2k−3f(psτ) + pk−3
∑

i mod p

f(qsτ + ti,0,0)

+ pk−3
∑

i,k mod p

f((ps+ vi)τ + t0,0,k) + p−3
∑

i,j,k mod p

f(sτ/p+ ti,j,k)

and

ϕ∗s(f |kT1(p
2))(τ)

= p3k−6f(pqsτ) + p3k−6
∑

i mod p

f(p(ps+ vi)τ)

+ p2k−6
∑

i ̸≡0 mod p

f(sτ + ti,0,0) + p2k−6
∑

i mod p,
j ̸≡0 mod p

f(sτ + jti2,i,1)

+ pk−6
∑

i mod p2,
j mod p

f(qsτ/p+ ui,j,0) + pk−6
∑

i,j mod p,
k mod p2

f((ps+ vi)τ/p+ u0,j,k)
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Upon expanding in Puiseux q-series, there is cancellation within the sums
of restrictions in Proposition 5.2. The following proposition, which repeats
Proposition 6.3.8 of [3] but also includes some additional formulas, shows that
partial summation gives new restrictions whose sum over smaller index sets
equals the original sum for integral powers of q. The proposition is subtle in
that its simpler coefficients necessarily match the original ones only at integral
powers. For a Puiseux series f ∈ C[[q1/∞]] and e ∈ Q≥0, let coeffe f denote
the coefficient of qe in f , a complex number.

Proposition 5.3. Let N, f, p, s, qs, ps be as at the beginning of this section. Let

p ∤ N . For any integers i, j, k let ti,j,k =
(

i/p j/p
j/p k/p

)
, ui,j,k =

(
i/p2 j/p

j/p k/p2

)
, and

vi = pu0,ia,i(ia+2b). The following statements hold for all e ∈ N0.

(a) If p ∤ a then

coeffe

∑
i mod p

f(qsτ + ti,0,0) = p coeffe f(qsτ)

and

coeffe

∑
i,j,k mod p

f(sτ/p+ ti,j,k) = p coeffe

∑
j,k mod p

f(sτ/p+ t0,j,k)

and

coeffe

∑
i mod p2

j mod p

f(qsτ/p+ ui,j,0) = p2 coeffe

∑
j mod p

f(qsτ/p+ u0,j,0).

(b) If p ∤ b then

coeffe

∑
i,j,k mod p

f(sτ/p+ ti,j,k) = p coeffe

∑
i,k mod p

f(sτ/p+ ti,0,k)

and

coeffe

∑
i mod p2

j mod p

f(qsτ/p+ ui,j,0) = p coeffe

∑
i mod p2

f(qsτ/p+ ui,0,0).

(c) If p ∤ c then

coeffe

∑
i,j,k mod p

f(sτ/p+ ti,j,k) = p coeffe

∑
i,j mod p

f(sτ/p+ ti,j,0).

(d) For i ∈ Z, if p ∤ c+ i(ia+ 2b)N then

coeffe

∑
k mod p

f((ps+ vi)τ + t0,0,k) = p coeffe f((ps+ vi)τ)

and

coeffe

∑
j mod p
k mod p2

f((ps+ vi)τ/p+ u0,j,k) = p2 coeffe

∑
j mod p

f((ps+ vi)τ/p+ u0,j,0).
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Proof. We prove the second part of (d), the others being similar; (c) is proved

in [3]. Let p ∤ c+ i(ia+ 2b)N . Let e ∈ N0. With t =
(

n r/2
r/2 mN

)
, the coefficient

of qe on the left side is ∑
j mod p, k mod p2

n,r,m: an+(ia+b)r/p

+(c+i(ia+2b)N)mN/p2=e

a(t; f)e(jr/p+ kmN/p2).

Because
∑

j mod p e(jr/p) = 0 if p ∤ r, this sum is∑
n,r,m: an+(ia+b)r/p

+(c+i(ia+2b)N)mN/p2=e
p|r

∑
j mod p, k mod p2

a(t; f)e(jr/p+ kmN/p2).

Because p ∤ c + i(ia + 2b)N , if p|r then p2 | m inside the summation (since
p ∤ N). Thus the above sum becomes∑

n,r,m: an+(ia+b)r/p

+(c+i(ia+2b)N)mN/p2=e
p|r

∑
j mod p, k mod p2

a(t; f)e(jr/p+ 0)

=
∑

n,r,m: an+(ia+b)r/p

+(c+i(ia+2b)N)mN/p2=e
p|r

∑
j mod p

p2a(t; f)e(jr/p)

=
∑

n,r,m: an+(ia+b)r/p

+(c+i(ia+2b)N)mN/p2=e

∑
j mod p

p2a(t; f)e(jr/p)

= p2
∑

j mod p

∑
n,r,m: an+(ia+b)r/p

+(c+i(ia+2b)N)mN/p2=e

a(t; f)e(jr/p)

= p2
∑

j mod p

coeffe f((ps+ vi)τ/p+ u0,j,0). □

We now give similar speed-up theorems for the case when p∥N . Having
only one power of p divide N is needed to have all upper triangular coset
representatives.

Proposition 5.4. Let p∥N . Fix p̂, N̂ ∈ Z such that p̂p+ N̂N/p = 1. We have
the following right coset decompositions.

K(N) diag(p, p, 1, 1)K(N)

=
∑

i,j,k mod p

K(N)

(
1 0 i j
0 1 j k/p

p 0
0 p

)
+

∑
i,j mod p

K(N)

(
p 0 0 0
i 1 0 j/p

1 −i
0 p

)
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+
∑

i,j mod p

K(N)

(
1 −Nj i 0
0 p 0 0

p 0
Nj 1

)
+

∑
j mod p

K(N)

 p −N jN/p j

N̂ p̂p p̂j −N̂j/p

p̂p −N̂
N p


+K(N)

( p 0
0 p

1 0
0 1

)
,

K(N) diag(p, p2, p, 1)K(N)

=
∑

i,j mod p
k mod p2

K(N)

(
p 0 0 jp
i 1 j −ij+k/p

p −ip

0 p2

)
+

∑
j mod p

K(N)

(
p −Njp

0 p2

p 0
Nj 1

)

+
∑

i,j,k mod p
k ̸=0 mod p

K(N)

(
p −jNp 0 0
−i ijN+p jNk/p k/p

ijN+p i
jNp p

)

+
∑

i,j mod p
i ̸=0 mod p

K(N)

( p −Npj −ijN −i

N̂ p−N̂Nj i(N̂Nj/p−1) iN̂/p

p−N̂Nj −N̂
jNp p

)
.

Proof. The coset representatives of the decomposition of K(N) diag(p, p, 1, 1)
K(N) are precisely the right coset representatives given in Proposition 2.10 of
[32], except that we have replaced the last representative in Proposition 2.10
of [32] as follows: for p ∤ i, replace
p 0
0 p

1 0
0 1




1 0
0 1

0 iN̂N 1 0

iN̂N 0 0 1

 with


p −N ı̂N/p ı̂

N̂ p̂p p̂ı̂ −N̂ ı̂/p
p̂p −N̂
N p

 ,

where ı̂ is such that îı ≡ 1 mod p. It is a straightforward calculation that the
left-hand representative multiplied on the right by the inverse of the right-hand
representative is

(îıN̂N + p)/p (îıN̂N2 −Np)/p2 −ı̂N/p −ı̂
(N̂p− îıN̂2N)/p2 ((îıN̂N + p)p̂)/p −ı̂p̂ ı̂N̂/p

(iN̂2N)/p −iN̂Np̂ pp̂ −N̂
−iN̂N −(iN̂N2)/p N p

 .

Using the fact that 1− îıN̂N/p is a multiple of p, it is straightforward to show
that the entries satisfy the conditions for the matrix to be in K(N). Summing
over i mod p, i ̸= 0 is the same as summing over ı̂ mod p, ı̂ ̸= 0, and so we
replace ı̂ with j. Thus we may replace the representative as stated. The proof
of the decomposition of K(N) diag(p, p2, p, 1)K(N) is similar. □

In the next two propositions, ti,j,k and ui,j,k are defined differently than they
were in Propositions 5.2 and 5.3.
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Proposition 5.5. Let N, f, p, s, qs, ps be as at the beginning of this section. Let

p∥N . For any integers i, j, k let ti,j,k =
(

i/p j/p

j/p k/p2

)
, ui,j,k =

(
i/p j/p

j/p k/p3

)
, vi =

pt0,ia,i(ia+2b), and wj = j
(

(−2b+jc)N/p −c
−c 0

)
. Fix p̂, N̂ ∈ Z such that p̂p +

N̂N/p = 1. The restrictions of f |kT(p) and f |kT1,0(p
2) are

ϕ∗s(f |kT(p))(τ)

= p−3
∑

i,j,k mod p

f(sτ/p+ ti,j,k) + pk−3
∑

i,k mod p

f((ps+ vi)τ + t0,0,k)

+ pk−3
∑

i,j mod p

f((qs+ wj)τ + ti,0,0)

+ pk−3
∑

j ̸≡0 mod p

f
(( −2bN+cN/p+ap b−p̂c+aN̂−2bN̂N/p

b−p̂c+aN̂−2bN̂N/p −p̂cN̂N+aN̂2N+p̂cp+2p̂bN̂Np
Np

)
τ + t0,j,0

)
+ p2k−3f(psτ),

ϕ∗s(f |kT1,0(p
2))(τ)

= pk−6
∑

i,j mod p,
k mod p2

f((ps+ vi)τ/p+ u0,j,k)

+ p2k−6
∑

i,j mod p,
i ̸=0

f
(
(s+

 j(cj−2b)N aN̂−2bN̂jN+cN̂j2N−cjp
p

{aN̂−2bN̂jN+

cN̂j2N−cjp
}

p

{ aN̂2−2bN̂2jN+

cN̂2j2N+2bN̂p−2cN̂jp
}

p2

)τ + t0,i,0

)

+ p3k−6
∑

j mod p

f(p(qs+ wj)τ)

+ p2k−6
∑

i,j mod p,
k ̸≡0 mod p

f
(
(s+

 j(−2b+cj)N −ai+2bijN−cij2N−cjp
p

{
−ai+2bijN
−cij2N−cjp

}

p

{ai
2−2bi2jN+ci2j2N

−2bip+2cijp
}

p2

)τ + t0,0,k

)

Proof. Apply (1) to Proposition 5.4. □

We have the following available speed-ups.

Proposition 5.6. Let N, f, p, s, qs, ps be as at the beginning of this section. Let

p∥N . For any integers i, j, k let ti,j,k =
(

i/p j/p

j/p k/p2

)
, ui,j,k =

(
i/p j/p

j/p k/p3

)
, vi =

pt0,ia,i(ia+2b), and wj = j
(

(−2b+jc)N/p −c
−c 0

)
. Then the following statements hold

for all e ∈ Z≥0.

(a) If p ∤ a, then

coeffe

∑
i,j,k mod p

f(sτ/p+ ti,j,k) = p coeffe

∑
j,k mod p

f(sτ/p+ t0,j,k)
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and

coeffe

∑
i,j mod p

f((qs+ wj)τ + ti,0,0) = p coeffe

∑
j mod p

f((qs+ wj)τ)

(b) If p ∤ b then

coeffe

∑
i,j,k mod p

f(sτ/p+ ti,j,k) = p coeffe

∑
i,k mod p

f(sτ/p+ ti,0,k).

(c) If p ∤ c then

coeffe

∑
i,j,k mod p

f(sτ/p+ ti,j,k) = p coeffe

∑
i,j mod p

f(sτ/p+ ti,j,0)

and

coeffe

∑
i,k mod p

f((ps+ vi)τ + t0,0,k) = p coeffe

∑
i mod p

f((ps+ vi)τ)

and

coeffe

∑
i,j mod p,
k mod p2

f((ps+ vi)τ/p+ u0,j,k)

= p2 coeffe

∑
i,j mod p

f((ps+ vi)τ/p+ u0,j,0).

(d) For fixed i, if p ∤ ia+ b then

coeffe

∑
j mod p,
k mod p2

f((ps+ vi)τ/p+ u0,j,k) = p coeffe

∑
k mod p2

f((ps+ vi)τ/p+ u0,0,k).

Proof. The proofs are similar to those of Proposition 5.3 □

Another speed-up is that for X,Y ∈ Msym
2 , if the set {t ∈ X2 : Tr(Xt) = e}

is empty then coeffe f(Xτ + Y ) = 0. Here the set is independent of Y and
the conclusion holds for all Y , and so checking whether the set is empty can
save significant computation time. Further, this result can be crucial when the
denominator of a particular formula for f might restrict to zero for some X
and Y , because we simply skip this X.
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[3] A. Brumer, A. Pacetti, C. Poor, G. Tornaŕıa, J. Voight, and D. S. Yuen, On the paramod-

ularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145–1195.
https://doi.org/10.2140/ant.2019.13.1145

https://doi.org/10.1016/j.jnt.2007.09.002
https://doi.org/10.1016/j.jnt.2007.09.002
https://doi.org/10.1090/conm/796/16004
https://doi.org/10.1090/conm/796/16004
https://doi.org/10.2140/ant.2019.13.1145


1032 C. POOR, J. SHURMAN, AND D. S. YUEN

[4] N. Dummigan, A. Pacetti, G. Rama, and G. Tornaŕıa, Quinary forms and paramodular

forms, Math. Comp. 93 (2024), no. 348, 1805–1858. https://doi.org/10.1090/mcom/

3815

[5] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55,
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