DOI QR코드

DOI QR Code

Effects of ascorbic acid augmented albumin platelet-rich fibrin on the wound healing activity of human gingival fibroblasts: an in vitro trial

  • Manjiri Kulkarni (Department of Periodontics, Bapuji Dental College and Hospital) ;
  • Sowmya NK (Department of Periodontics, Bapuji Dental College and Hospital) ;
  • Gayathri GV (Department of Periodontics, Bapuji Dental College and Hospital) ;
  • Triveni MG (Department of Periodontics, Bapuji Dental College and Hospital)
  • Received : 2024.03.14
  • Accepted : 2024.06.19
  • Published : 2024.08.31

Abstract

Objectives: The current in vitro study aimed to assess the effects of ascorbic acid augmented albumin platelet-rich fibrin (AA Alb-PRF) on the wound healing activity of human gingival fibroblasts (HGFs) purported to be a regenerative biomaterial in surgical procedures. Materials and Methods: All assays were performed on three HGF groups, group I: complete media; group II: Alb-PRF, and group III: AA Alb-PRF. Alb-PRF was prepared following the protocol by Fujioka-Kobayashi et al. (2021). For preparation of AA Alb-PRF, 2,500 ㎍ AA was added to the blood pre-centrifugation. All groups were subjected to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to estimate cell viability and proliferation, scratch assay for migration (0, 4, 12, and 24 hours) and transwell migration assay for chemotactic migration assessment (24 hours). Outcome variables were optical density (OD) for MTT assay, percentage of wound closure in scratch assay, and number of migrated cells in transwell migration assay. One-way ANOVA for MTT and transwell migration assays and two-way ANOVA for scratch assay with Bonferroni correction were performed with significance set at P<0.05. Results: Cell viability and proliferation (OD: 0.684±0.003 and proliferation: 28%) and wound closure (49.92%±1.62% at 4 hours and 61.39%±0.88% at 12 hours) were significantly higher in group III, while group II demonstrated the maximum number of HGFs migrating across the transwell membrane (9.25±2.49) with P<0.05. Conclusion: HGFs demonstrated a significant increase in viability and proliferation along with rapid wound closure in the presence AA Alb-PRF compared to Alb-PRF alone, indicating additional beneficial effects of AA. Thus, AA Alb-PRF potentiates the wound healing activity of HGFs and could be employed in oral, maxillofacial, and periodontal surgeries as a regenerative biomaterial.

Keywords

Acknowledgement

The authors would like to thank Dr. Kishore G Bhat and Dr. Chetana Bogar at the Central Research Laboratory of Maratha Mandal's NGH Institute of Dental Sciences, Belagavi, Karnataka, India, for their help and support with the cell culture and all the assays carried out in this study. We would also like to acknowledge Dr. Usha GV, Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India, for the statistical analysis of the data.

References

  1. Elbehwashy MT, Hosny MM, Elfana A, Nawar A, Fawzy El-Sayed K. Clinical and radiographic effects of ascorbic acid-augmented platelet-rich fibrin versus platelet-rich fibrin alone in intra-osseous defects of stage-III periodontitis patients: a randomized controlled clinical trial. Clin Oral Investig 2021;25:6309-19. https://doi.org/10.1007/s00784-021-03929-1 
  2. Chaitrakoonthong T, Ampornaramveth R, Kamolratanakul P. Rinsing with L-ascorbic acid exhibits concentration-dependent effects on human gingival fibroblast in vitro wound healing behavior. Int J Dent 2020;2020:4706418. https://doi.org/10.1155/2020/4706418 
  3. Fujioka-Kobayashi M, Schaller B, Mourao CFAB, Zhang Y, Sculean A, Miron RJ. Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich fibrin (Alb-PRF). Platelets 2021;32:74-81. https://doi.org/10.1080/09537104.2020.1717455 
  4. Dohan Ehrenfest DM, Del Corso M, Diss A, Mouhyi J, Charrier JB. Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane. J Periodontol 2010;81:546-55. https://doi.org/10.1902/jop.2009.090531 
  5. Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e56-60. https://doi.org/10.1016/j.tripleo.2005.07.011 
  6. Miron RJ, Fujioka-Kobayashi M, Bishara M, Zhang Y, Hernandez M, Choukroun J. Platelet-rich fibrin and soft tissue wound healing: a systematic review. Tissue Eng Part B Rev 2017;23:83-99. https://doi.org/10.1089/ten.teb.2016.0233 
  7. Fan Y, Perez K, Dym H. Clinical uses of platelet-rich fibrin in oral and maxillofacial surgery. Dent Clin North Am 2020;64:291-303. https://doi.org/10.1016/j.cden.2019.12.012 
  8. Njokanma AR, Fatusi OA, Ogundipe OK, Arije OO, Akomolafe AG, Kuye OF. Does platelet-rich fibrin increase bone regeneration in mandibular third molar extraction sockets? J Korean Assoc Oral Maxillofac Surg 2022;48:371-81. https://doi.org/10.5125/jkaoms.2022.48.6.371 
  9. Jung JW, Hong SO, Lee EJ, Kim RY, Jee YJ. The double-barrier technique using platelet-rich fibrin for closure of oroantral fistulas. J Korean Assoc Oral Maxillofac Surg 2023;49:163-8. https://doi.org/10.5125/jkaoms.2023.49.3.163 
  10. Miron RJ, Pikos MA, Estrin NE, Kobayashi-Fujioka M, Espinoza AR, Basma H, et al. Extended platelet-rich fibrin. Periodontol 2000 2024;94:114-30. https://doi.org/10.1111/prd.12537 
  11. Gheno E, Mourao CFAB, Mello-Machado RC, Stellet Lourenco E, Miron RJ, Catarino KFF, et al. In vivo evaluation of the biocompatibility and biodegradation of a new denatured plasma membrane combined with liquid PRF (Alb-PRF). Platelets 2021;32:542-54. https://doi.org/10.1080/09537104.2020.1775188 
  12. Miron RJ, Moraschini V, Fujioka-Kobayashi M, Zhang Y, Kawase T, Cosgarea R, et al. Use of platelet-rich fibrin for the treatment of periodontal intrabony defects: a systematic review and meta-analysis. Clin Oral Investig 2021;25:2461-78. https://doi.org/10.1007/s00784-021-03825-8 
  13. Van Pham P, Tran NY, Phan NL, Vu NB, Phan NK. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers. In Vitro Cell Dev Biol Anim 2016;52:218-27. https://doi.org/10.1007/s11626-015-9963-2 
  14. Mohammed BM, Fisher BJ, Kraskauskas D, Ward S, Wayne JS, Brophy DF, et al. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J 2016;13:572-84. https://doi.org/10.1111/iwj.12484 
  15. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010;89:219-29. https://doi.org/10.1177/0022034509359125 
  16. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e37-44. https://doi.org/10.1016/j.tripleo.2005.07.008 
  17. Rahman S, Gayathri GV, Mehta DS. Comparative evaluation of advanced platelet rich fibrin membrane with and without glutaraldehyde crosslinking- a de novo in vitro trial. EC Dent Sci 2019;18:2328-37. 
  18. Mourao CFAB, Gheno E, Lourenco ES, Barbosa RL, Kurtzman GM, Javid K, et al. Characterization of a new membrane from concentrated growth factors associated with denaturized albumin (Alb-CGF) for clinical applications: a preliminary study. Int J Growth Factors Stem Cells Dent 2018;1:64-9.  https://doi.org/10.4103/GFSC.GFSC_21_18
  19. Horvathy DB, Simon M, Schwarz CM, Masteling M, Vacz G, Hornyak I, et al. Serum albumin as a local therapeutic agent in cell therapy and tissue engineering. Biofactors 2017;43:315-30. https://doi.org/10.1002/biof.1337 
  20. Kim M, Otsuka M, Yu R, Kurata T, Arakawa N. The distribution of ascorbic acid and dehydroascorbic acid during tissue regeneration in wounded dorsal skin of guinea pigs. Int J Vitam Nutr Res 1994;64:56-9. 
  21. Yussif NM, Abdul Aziz MA, Abdel Rahman AR. Evaluation of the anti-inflammatory effect of locally delivered vitamin C in the treatment of persistent gingival inflammation: clinical and histopathological study. J Nutr Metab 2016;2016:2978741. https://doi.org/10.1155/2016/2978741 
  22. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell viability assays. In: Markossian S, Grossman A, Arkin M, Auld D, Austin C, Baell J, et al., eds. Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. 
  23. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, et al. In vitro cell migration and invasion assays. Mutat Res 2013;752:10-24. https://doi.org/10.1016/j.mrrev.2012.08.001 
  24. Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 2011;3:107-24. https://doi.org/10.3390/pharmaceutics3010107 
  25. Miron RJ, Dham A, Dham U, Zhang Y, Pikos MA, Sculean A. The effect of age, gender, and time between blood draw and start of centrifugation on the size outcomes of platelet-rich fibrin (PRF) membranes. Clin Oral Investig 2019;23:2179-85. https://doi.org/10.1007/s00784-018-2673-x 
  26. McClain SA, Simon M, Jones E, Nandi A, Gailit JO, Tonnesen MG, et al. Mesenchymal cell activation is the rate-limiting step of granulation tissue induction. Am J Pathol 1996;149:1257-70. 
  27. Baranyi U, Winter B, Gugerell A, Hegedus B, Brostjan C, Laufer G, et al. Primary Human fibroblasts in culture switch to a myofibroblast-like phenotype independently of TGF beta. Cells 2019;8:721. https://doi.org/10.3390/cells8070721 
  28. Marconi GD, Fonticoli L, Rajan TS, Lanuti P, Della Rocca Y, Pierdomenico SD, et al. Transforming growth factor-beta1 and human gingival fibroblast-to-myofibroblast differentiation: molecular and morphological modifications. Front Physiol 2021;12:676512. https://doi.org/10.3389/fphys.2021.676512 
  29. Smith PC. Role of myofibroblasts in normal and pathological periodontal wound healing. Oral Dis 2018;24:26-9. https://doi.org/10.1111/odi.12773 
  30. Smith PC, Martinez C, Martinez J, McCulloch CA. Role of fibroblast populations in periodontal wound healing and tissue remodeling. Front Physiol 2019;10:270. https://doi.org/10.3389/fphys.2019.00270 
  31. Piersma B, Wouters OY, de Rond S, Boersema M, Gjaltema RAF, Bank RA. Ascorbic acid promotes a TGFβ1-induced myofibroblast phenotype switch. Physiol Rep 2017;5:e13324. https://doi.org/10.14814/phy2.13324 
  32. Bi J, Intriago MFB, Koivisto L, Jiang G, Hakkinen L, Larjava H. Leucocyte- and platelet-rich fibrin regulates expression of genes related to early wound healing in human gingival fibroblasts. J Clin Periodontol 2020;47:851-62. https://doi.org/10.1111/jcpe.13293