DOI QR코드

DOI QR Code

Study on Superconducting Coil Charging Using Single-stack Fuel Cell Power Technology

단일 스택 연료전지 전력 기술을 적용한 초전도 코일 충전에 관한 연구

  • YOUNG MIN SEO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • HYUN WOO NOH (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • TAE HYUNG KOO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • DONG WOO HA (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • ROCK KIL KO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute)
  • 서영민 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 노현우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 구태형 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 하동우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 고락길 (한국전기연구원 전기모빌리티연구단 수소전기연구팀)
  • Received : 2024.07.12
  • Accepted : 2024.07.25
  • Published : 2024.08.30

Abstract

In this study, a fuel cell with a single stack of 100 cm2 was manufactured and a superconducting coil driving experiment was conducted. Fuel cell activation and performance evaluation were performed, and a method of applying current to a superconducting coil using a fuel cell was considered by controlling the flow rate of gas supplied to the fuel cell. A scenario was created using a specific program to change the amount of gas supplied to the fuel cell over time. As a result of analyzing the voltage and magnetic field of the superconducting coil according to the applied current, it was confirmed that the performance of fuel cell was almost the same with that of power supply.

Keywords

Acknowledgement

이 연구는 2024년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 24A01070). 이 연구는 2024년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(24A02089, 액체수소 운송을 위한 3,000 kg 용량 탱크 트레일러 개발 및 실증).

References

  1. M. Inci, M. Buyuk, M. H. Demir, and G. Ilbey, "A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects", Renewable and Sustainable Energy Reviews, Vol. 137, 2021, pp. 110648, doi: https://doi.org/10.1016/j.rser.2020.110648. 
  2. P. G. Papageorgiou, K. O. Oureilidis, and G. C. Christoforidis, "A systematic review of hybrid superconducting magnetic/battery energy storage systems: applications, control strategies, benefits, limitations and future prospects", Renewable and Sustainable Energy Reviews, Vol. 183, 2023, pp. 113436, doi: https://doi.org/10.1016/j.rser.2023.113436. 
  3. E. L. Molina-Ibanez, E. Rosales-Asensio, C. Perez-Molina, F. M. Perez, and A. Colmenar-Santos, "Analysis on the electric vehicle with a hybrid storage system and the use of Superconducting magnetic energy storage (SMES)", Energy Reports, Vol. 7, Suppl. 5, 2021, pp. 854-873, doi: https://doi.org/10.1016/j.egyr.2021.07.055. 
  4. M. S. Esmaeili and M. Mehrpooya, "Modeling and exergy analysis of an integrated cryogenic refrigeration system and superconducting magnetic energy storage", Journal of Energy Storage, Vol. 73, Pt. B, 2023, pp. 109033, doi: https://doi.org/10.1016/j.est.2023.109033. 
  5. W. Li, T. Yang, G. Li, J. Lu, and Y. Xin, "Experimental study of a novel superconducting energy conversion/storage device", Energy Conversion and Management, Vol. 243, 2021, pp. 114350, doi: https://doi.org/10.1016/j.enconman.2021.114350. 
  6. J. Woo, Y. Kim, and S. Yu, "Analysis of dynamic characteristics of 20 kW hydrogen fuel cell system based on AMESet", Journal of Hydrogen and New Energy, Vol. 34, No. 5, 2023, pp. 465-477, doi: https://doi.org/10.7316/JHNE.2023.34.5.465. 
  7. D. Hyun, S. Hong, and J. Han "Model development for analysis of the system dynamic characteristics for fuel cell-battery based unmanned aerial vehicles", Journal of Hydrogen and New Energy, Vol. 34, No. 5, 2023, pp. 490-496, doi: https://doi.org/10.7316/JHNE.2023.34.5.490. 
  8. D. Jung, J. Yoon, and H. Song, "Experimental and numerical study on flow characteristics of a common exhaust system for multiple SOFCs", Journal of Hydrogen and New Energy, Vol. 34, No. 6, 2023, pp. 657-666, doi: https://doi.org/10.7316/JHNE.2023.34.6.657. 
  9. B. N. Lee, A. Kodir, H. Jee, D. Shin, and B. Bae, "Preparation and characterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Journal of Hydrogen and New Energy, Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308. 
  10. J. Woo, Y. Kim, and S. Yu, "Performance of fuel cell system for medium duty truck by cooling system configuration", Journal of Hydrogen and New Energy, Vol. 32, No. 4, 2021, pp. 236-244, doi: https://doi.org/10.7316/KHNES.2021.32.4.236. 
  11. N. Son, M. Naseem, U. Kim, and Y. D. Lee, "Dynamic simulation of proton exchange membrane fuel cell stack under various operating pattern of fuel cell powered heavy duty truck", Journal of Hydrogen and New Energy, Vol. 35, No. 2, 2024, pp. 121-128, doi: https://doi.org/10.7316/JHNE.2024.35.2.121. 
  12. T. Nakayama, T. Yagai, M. Tsuda, and T. Hamajima, "Stability analysis of high temperature superconducting coil in liquid hydrogen", Physica C: Superconductivity and its Applications, Vol. 463-465, 2007, pp. 1285-1288, doi: https://doi.org/10.1016/j.physc.2007.04.299. 
  13. M. Sander, R. Gehring, H. Neumann, and T. Jordan, "LIQHYSMES storage unit - hybrid energy storage concept combining liquefied hydrogen with superconducting magnetic energy storage", International Journal of Hydrogen Energy, Vol. 37, No. 19, 2012, pp. 14300-14306, doi: https://doi.org/10.1016/j.ijhydene.2012.07.019. 
  14. T. Hamajima, M. Tsuda, D. Miyagi, H. Amata, T. Iwasaki, K. Son, N. Atomura, T. Shintomi, Y. Makida, T. Takao, K. Munakata, and M. Kajiwara, "Advanced superconducting power conditioning system with SMES for effective use of renewable energy", Physics Procedia, Vol. 27, 2012, pp. 396-399, doi: https://doi.org/10.1016/j.phpro.2012.03.494. 
  15. A. Murata, T. Uchikoshi, and M. Matsuda, "Fabrication and characterization of oriented Nd2NiO4 bulk and cathode for low-temperature operating solid oxide fuel cell", Journal of Power Sources, Vol. 293, 2015, pp. 95-100, doi: https://doi.org/10.1016/j.jpowsour.2015.05.045. 
  16. J. M. Collins and D. McLarty, "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids", Applied Energy, Vol. 265, 2020, pp. 114787, doi: https://doi.org/10.1016/j.apenergy.2020.114787. 
  17. R. Linares, S. Rael, K. Berger, M. Hinaje, and J. Leveque, "PEM single fuel cell as a dedicated power source for high-inductive superconducting coils", International Journal of Hydrogen Energy, Vol. 43, No. 11, 2018, pp. 5913-5921, doi: https://doi.org/10.1016/j.ijhydene.2017.09.013.