DOI QR코드

DOI QR Code

산업용 코일 포장을 위한 협동 양팔 로봇 시스템의 개발

Development of Collaborative Dual Manipulator System for Packaging Industrial Coils

  • Haeseong Lee (Department of Intelligence and Information, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Yonghee Lee (Interdisciplinary Program in Artificial Intelligence, Seoul National University) ;
  • Jaeheung Park (Graduate School of Convergence Science and Technology, ASRI, RICS, Seoul National University, Korea and Advanced Institutes of Convergence Technology)
  • 투고 : 2024.02.14
  • 심사 : 2024.05.13
  • 발행 : 2024.08.30

초록

This paper introduces a dual manipulator system designed to automate the packaging process of industrial coils, which exhibit higher variability than other structured industrial fields due to diverse commercial requirements. The conventional solution involves the direct-teaching method, where an operator instructs the robot on a target configuration. However, this method has distinct limitations, such as low flexibility in dealing with varied sizes and safety concerns for the operators handling large products. In this sense, this paper proposes a two-step approach for coil packaging: motion planning and assembly execution. The motion planning includes a Rapidly-exploring Random Tree algorithm and a smoothing method, allowing the robot to reach the target configuration. In the assembly execution, the packaging is considered a peg-in-hole assembly. Unlike typical peg-in-hole assembly handling two workpieces, the packaging includes three workpieces (e.g., coil, inner ring, side plate). To address this assembly, the paper suggests a suitable strategy for dual manipulation. Finally, the validity of the proposed system is demonstrated through experiments with three different sizes of coils, replicating real-world packaging situations.

키워드

과제정보

This work was funded by POSCO and partly supported by IITP grant funded by the Korea government [NO.2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National University)].

참고문헌

  1. P. Tsarouchi, S. Makris, G. Michalos, M. Stefos, K. Fourtakas, K. Kaltsoukalas, D. Kontrovrakis, and G. Chryssolouris, "Robotized assembly process using dual arm robot," Procedia CIrP, vol. 23, pp. 47-52, Dec., 2014, DOI: 10.1016/j.procir.2014.10.078. 
  2. J. R. Davidson, C. J. Hohimer, C. Mo, and M. Karkee, "Dual robot coordination for apple harvesting," 2017 ASABE annual international meeting. American Society of Agricultural and Biological Engineers, 2017, DOI: 10.13031/aim.201700567. 
  3. O. Kroemer, H. van Hoof, G. Neumann, and J. Peters, "Learning to predict phases of manipulation tasks as hidden states," 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 4009-4014, 2014, DOI: 10.1109/ICRA. 2014.6907441. 
  4. J. Umlauft, D. Sieber, and S. Hirche, "Dynamic Movement Primitives for cooperative manipulation and synchronized motions," 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 766-771, 2014, DOI: 10.1109/IC-RA.2014.6906941. 
  5. B. Chen, J. Wan, L. S hu, P. Li, M. Mukherjee, and B. Yin, "Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges," IEEE Access, vol. 6, pp. 6505-6519, 2018, DOI: 10.1109/ACCESSS.2017.2783682. 
  6. C. Park sand K. Park, "Design and kinematics analysis of dual arm robot manipulator for precision assembly," 2008 6th IEEE International Conference on Industrial Informatics, Daejeon, Republic of Korea, pp. 430-435, 2008, DOI: 10.1109/INDIN.2008.4618138. 
  7. J. F. Buhl, R. Gronhoj, J. K. Jorgensen, G. Mateus, D. Pinto, J. K. Sorensen, S. Bogh, and D. Chrysostomou, "A dual-arm collaborative robot system for the smart factories of the future," Procedia manufacturing, vol. 38, pp. 333-340, 2019, DOI: 10.1016/j.promfg.2020.01.043. 
  8. K. Harada, T. Foissotte, T. Tsuji, K. Nagata, N. Yamanobe, A. Nakamura, and Y. Kawai, "Pick and place planning for dual-arm manipulators," 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, pp. 2281-2286, 2012, DOI: 10.1109/ICRA.2012.6224780. 
  9. L. Gracia, C. Perez-Vidal, D. Mronga, J.-M. de Paco, J.-M. Azorin, and J. de Gea, "Robotic manipulation for the shoe-packaging process," The International Journal of Advanced Manufacturing Technology, vol. 92, pp. 1053-1067, 2017, DOI: 10.1007/s00170-017-0212-6. 
  10. H. M. Do, T.-Y. Choi, and J. H. Kyung, "Automation of cell production system for cellular phones using dual-arm robots," The International Journal of Advanced Manufacturing Technology, vol. 83, pp. 1349-1360, 2016, DOI: 10.1007/s00170-015-7585-1. 
  11. T. Doi, H. Fukuchi, N. Takeda, Y. Nakai, M. Miyawaki, and Y. Jitsukata, "Development of automatic packaging systems for sheets and coils," NIPPON STEEL CORP, Tokyo, Japan, [Online], www.nipponsteel.com/en/tech/report/nsc/pdf/5713.pdf. 
  12. POSCO M-TECH CO., Ltd, "Apparatus for attaching side protector and inner-ring for coil packing," KR Patent 101189 8500000, Oct., 4, 2012, DOI: 10.8080/1020100057864. 
  13. POSCO M-TECH CO., Ltd, "Apparatus for aligning side protector and inner-ring for coil packing," KR Patent 101152052 0000, May, 24, 2012, DOI: 10.8080/1020100057865. 
  14. C. Park, K. Park, D. I. Park, and J.-H. Kyung, "Dual arm robot manipulator and its easy teaching system," 2009 IEEE International Symposium on Assembly and Manufacturing, Seoul, Republic of Korea, pp. 242-247, 2009, DOI: 10.1109/ISAM.2009.5376963. 
  15. R. Li and H. Qiao, "A survey of methods and strategies for high-precision robotic grasping and assembly tasks-some new trends," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2718-2732, Dec., 2019, DOI: 10.1109/TMECH.2019.2945135. 
  16. J. Jiang, Z. Huang, Z. Bi, X. Ma, and G. Yu, "State-of-the-art control strategies for robotic PiH assembly," Robotics and Computer-Integrated Manufacturing, vol. 65, pp. 101894, Oct., 2020, DOI: 10.1016/j.rcim.2019.101894. 
  17. M. Suomalainen, Y. Karayiannidis, and V. Kyrki, "A survey of robot manipulation in contact," Robotics and Autonomous Systems, vol. 156, pp. 104224, Oct., 2022, DOI: 10.1016/j.robot.2022.104224. 
  18. S. Park, H. Lee, S. Kim, J. Baek, K. Jang, H. C. Kim, M. Kim, and J. Park, "Robotic furniture assembly: task abstraction, motion planning, and control," Intelligent Service Robotics, vol. 15, no. 4, pp. 441-457, May, 2022, DOI: 10.1007/s11370 -022-00427-5. 
  19. J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path planning," 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH 37065), San Francisco, CA, USA, pp. 995-1001, 2000, DOI: 10.1109/ROBOT.2000.844730. 
  20. K. Hauser and V. Ng-Thow-Hing, "Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts," 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, pp. 2493-2498, 2010, DOI: 10.1109/ROBOT.2010.5509683. 
  21. D. Coleman, I. sucan, S. Chitta, and N. Correll, "Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study," Journal of Software Engineering for Robotics, vol. 5, no. 1, pp. 3-16, May, 2014, DOI: 10.6092/JOSER_ 2014_05_01_p3. 
  22. I. A. Sucan, M. Moll, and L. E. Kavraki, "The Open Motion Planning Library," IEEE Robotics & Automation Magazine, vol. 9, no. 4, pp. 72-82, Dec., 2012, DOI: 10.1109/MRA.2012.2205651. 
  23. O. Khatib, "A unified approach for motion and force control of robot manipulators: The operational space formulation," IEEE Journal on Robotics and Automation, vol. 3, no. 1, pp. 43-53, Feb., 1987, DOI: 10.1109/JRA.1987.1087068. 
  24. H. Park, J. Park, D.-H. Lee, J.-H. Park, M.-H. Baeg, and J.-H. Bae, "Compliance-Based Robotic Peg-in-Hole Assembly Strategy Without Force Feedback," IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6299-6309, Aug., 2017, DOI: 10.1109/TIE.2017.2682002. 
  25. M. Suomalainen, S. Calinon, E. Pignat, and V. Kyrki, "Improving dual-arm assembly by Leader-Follower compliance," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, pp. 8676-8682, 2019, DOI: 10.1109/ICRA.2019.8793977. 
  26. M. P. Polverini, A. M. Zanchettin, S. Castello, and P. Rocco, "Sensorless and constraint based peg-in-hole task execution with a dual-arm robot," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, pp. 415-420, 2016, DOI: 10.1109/ICRA.2016.7487161. 
  27. H. Lee, S. Y. Lee, K. Jang, S. Kim, J. Ko, and J. Park, "Search trajectory with twisting motion for dual peg-in-hole assembly," Intelligent Service Robotics, vol. 14, pp. 597-609, Sept., 2021, DOI: 10.1007/s11370-021-00382-7. 
  28. H. Lee, S. Park, K. Jang, S. Kim, and J. Park, "Contact state estimation for peg-in-hole assembly using gaussian mixture model," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3349-3356, Apr., 2022, DOI: 10.1109/LRA.2022.3146949. 
  29. Dual Manipulator System for Coil Packaging, [Online], https://youtu.be/QULDMJcQoSk, Accessed: Jul. 10, 2024.