Acknowledgement
이 논문은 2023학년도 영남이공대학교 연구조성비 지원에 의한 것임.
References
- Abraham, D. A. (2019). Underwater Acoustic Signal Processing: Modeling, Detection, and Estimation, Springer.
- Chen, Z., Zhao, X., Zhou, Z., Ma, X., Cheng, Q., Cai, X., Jiang, B., Khan, R., Sharma, P. K., Alfarraj, O. and Tolba, A. (2023). The Adaptive Constant False Alarm Rate for Sonar Target Detection based on Back Propagation Neural Network Access, IET Signal Processing, 17(3), 12196.
- Feintuch, S., Permuter, H. H., Bilik, I. and Tabrikian, J. (2023). Neural Network-based Multi-target Detection within Correlated Heavy-tailed Clutter, IEEE Transactions on Aerospace and Electronic Systems, 59(5), 5684-5698.
- Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press.
- Hong, S.-W. and Han, D.-S. (2011). OSR CFAR Robust to Multiple Underwater Target Environments, Journal of the Institute of Electronics Engineers of Korea TC, 48(4), 47-52.
- Kim, G. and Lee, D. (2022). Mutual Interference Suppression of the Sinusoidal Frequency Modulated Pulse using SHAPE Algorithm, Journal of Korea Society of Industrial Information Systems, 27(5), 49-59.
- Kim, G., Lee, S., Lee, K. and Lee, D. (2020). A Study of Active Pulse Classification Algorithm using Multi-label Convolutional Neural Networks, Journal of Korea Society of Industrial Information Systems, 25(4), 29-38.
- Kim, G., Yoon, K., Lee, D., Cho, C., Hong, J. and Lee, K. (2019). Design of the Robust Generalized Sinusoidal Frequency Modulated Pulse in Reverberation Environments, Journal of Korea Society of Industrial Information Systems, 24(5), 95-104.
- Li, P., Wang, P., Berntorp, K. and Liu, H. (2022). Exploiting Temporal Relations on Radar Perception for Autonomous Driving, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 17071-17080.
- Lin, C.-H., Lin, Y.-C., Bai, Y., Chung, W.-H., Lee, T.-S. and Huttunen, H. (2019). DL-CFAR: A Novel CFAR Target Detection Method based on Deep Learning, IEEE 90th Vehicular Technology Conference (VTC2019 - Fall), Sep. 22-25, Honolulu, Hawaii, USA, pp. 1-6.
- Smith, M. E. and Varshney, P. K. (1997). VI-CFAR: A Novel CFAR Algorithm based on Data Variability, Proceedings of the 1997 IEEE National Radar Conference, May. 13-15, Syracuse, New York, USA, pp. 263-268.
- Zeng, T., Zhang, T., Shao, Z., Xu, X., Zhang, W., Shi, J., Wei, S. and Zhang, X. (2024). CFAR-DP-FW: A CFAR-guided Dual-Polarization Fusion Framework for Large Scene SAR Ship Detection, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7242-7259.
- Zhao, J., Jiang, R., Wang, X. and Gao, H. (2019). Robust CFAR Detection for Multiple Targets in K-distributed Sea Clutter based on Machine Learning, Symmetry. 11(12), 1482.
- Zhihui, C., Fang, W., Song, Y., He, L., Song, C. and Xu, Z. (2021). DNN-based Peak Sequence Classification CFAR Detection Algorithm for High-resolution FMCW Radar, IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15.