DOI QR코드

DOI QR Code

이산요소해석법을 활용한 개단말뚝의 관내토 거동 분석

Discrete Element Method (DEM) Analysis of Soil Plug Formation in Impact-Driven Open-ended Piles

  • 김영상 (고려대학교 건축사회환경공학부 ) ;
  • 김민태 (고려대학교 건축사회환경공학부)
  • Kim, Youngsang (Sch. of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Kim, Mintae (Sch. of Civil, Environmental and Architectural Engineering, Korea Univ.)
  • 투고 : 2024.08.12
  • 심사 : 2024.08.17
  • 발행 : 2024.08.31

초록

본 연구에서는 개단말뚝의 항타 과정을 이산요소해석법(DEM)으로 모델링하여 관내토의 거동을 분석하였다. DEM 모델 검증을 위해 모형말뚝시험과 수치해석 결과를 비교하였으며, 입자 간 회전 저항력을 고려한 접촉모델을 적용하여 흙 입자 간 상호작용을 검증하였다. 2차원 원형 입상재료의 상대밀도와 말뚝의 관입 속도를 조절하여 관내토의 압축 거동을 성공적으로 모사하였으며, 초기 관입 속도가 감소할수록 관내토가 더 압축되는 경향을 확인하였다. DEM 모델을 통해 관내토 길이와 관내토 길이 지표인 Plug Length Ratio(PLR), Incremental Filling Ratio(IFR)를 분석하였으며, 이를 모형시험 결과와 비교하여 개단말뚝의 관내토 거동을 검증하였다. 본 연구는 관내토의 폐색상태를 직접 반영하여 개단말뚝의 거동을 분석할 수 있는 이산요소해석법을 활용한 모델을 개발하였으며, 그 모델링 과정와 검증 방법을 상세히 소개하여 향후 연구의 시행착오를 줄이는 데 기여할 것으로 판단된다.

This study used the discrete element method (DEM) to model the driving process of open-ended piles and investigate the behavior of soil plug during pile penetration. The developed DEM model was verified by comparing model pile test results and numerical analysis, particularly using a contact model considering rolling resistance between soil particles. The study successfully simulated soil compression inside the pile by adjusting the relative density and penetration velocity, and it was confirmed that the soil plug tended to be more compressed as the initial penetration velocity decreased. Soil plug length measurements, plug length ratio, and incremental filling ratio were analyzed and validated against experimental results. The developed DEM model aims to reduce trial and error in further studies by detailing the modeling and verification process.

키워드

참고문헌

  1. Brucy, F., Meunier, J., and Nauroy, J. F. (1991), "Behavior of Pile Plug in Sandy Soils during and after Driving", Offshore Technology Conference, Houston, TX, USA, pp.OTC-6514. 
  2. Ciantia, M. O., Arroyo, M., Zhang, N., and Emam, S. (2017), "Periodic Cells for Large-scale Problem Initialization", EPJ Web of Conferences, Vol.140, pp.15012. 
  3. Esposito, R.G., Velloso, R.Q., do Amaral Vargas, E., Jr., and Danziger, B.R. (2018), "Multi-scale Sensitivity Analysis of Pile Installation Using DEM", Computational Particle Mechanics, Vol.5, pp.375-386. 
  4. Henke, S. and Bienen, B. (2013), "Centrifuge Tests Investigating the Influence of Pile Cross-section on Pile Driving Resistance of Open-ended Piles", International Journal of Physical Modelling in Geotechnics, Vol.13, No.2, pp.50-62. 
  5. Huang, A. B. and Ma, M. Y. (1994), "An Analytical Study of Cone Penetration Tests in Granular Material", Canadian Geotechnical Journal, Vol.31, No.1, pp.91-103. 
  6. Itasca Consulting Group, Inc. (2021), Itasca's Particle Flow Code Documentation (version 6.0), Itasca Consulting Group, Inc. Minneapolis, MN, USA. 
  7. Jardine, R., Chow, F., Overy, R., and Standing, J. (2005), ICP design methods for driven piles in sands and clays (Vol. 112), Thomas Telford, London. 
  8. Kim, M., Li, L., and Seo, H. (2023), "Effect of a Constrictor Plate on behavior of a Model Steel Pipe Pile Driven in Dense Sand", Ocean Engineering, Vol.267, pp.113210. 
  9. Kinloch, H. and O'Sullivan, C. (2007), "A Micro-mechanical Study of the Influence of Penetrometer Geometry on Failure Mechanisms in Granular Soils", Advances in Measurement and Modeling of Soil Behavior, pp.1-11. 
  10. Ko, J. and Jeong, S. (2015), "Plugging Effect of Open-ended Piles in Sandy Soil", Canadian Geotechnical Journal, Vol.52, No.5, pp.535-547. 
  11. Ko, J., Jeong, S., and Seo, H. (2022), "Effect of Soil Condition on the Coefficient of Lateral Earth Pressure Inside an Open-ended Pipe Pile", Geomechanics and Engineering, Vol.31, No.2, pp.209-222. 
  12. Lehane, B. M. and Randolph, M. F. (2002), "Evaluation of a Minimum base Resistance for Driven Pipe Piles in Siliceous Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No.3, pp.198-205. 
  13. Li, L., Wu, W., El Naggar, M. H., Mei, G., and Liang, R. (2019), "DEM Analysis of the Sand Plug behavior during the Installation Process of Open-ended Pile", Computers and Geotechnics, Vol.109, pp.23-33. 
  14. Li, L., Wu, W., Liu, H., and Lehane, B. (2021), "DEM Analysis of the Plugging Effect of Open-ended Pile during the Installation Process", Ocean Engineering, Vol.220, 108375. 
  15. Li, Y. N. and Li, J. P. (2014), "Discrete Element Modeling of Jacked Piles in Granular Soil", Electronic Journal of Geotechnical Engineering, Vol.19, pp.1109-1122. 
  16. Liu, J., Duan, N., Cui, L., and Zhu, N. (2019), "DEM Investigation of Installation Responses of Jacked Open-ended Piles", Acta Geotechnica, Vol.14, pp.1805-1819. 
  17. Lu, J., Guang, H., Cui, L., Liu, J., Wang, C., and Kumar, S. A. (2023), "Experimental Study on Penetration Characteristics of an Open-ended Pile under Static and Dynamic Driving Methods", Soil Dynamics and Earthquake Engineering, Vol.166, 107770. 
  18. Muir Wood, D. and Maeda, K. (2008), "Changing Grading of Soil: Effect on Critical States", Acta Geotechnica, Vol.3, pp.3-14. 
  19. Paik, K. and Lee, S. (1993), "Behavior of Soil Plugs in Open-ended Model Piles Driven into Sands", Marine Georesources & Geotechnology, Vol.11, No.4, pp.353-373. 
  20. Paik, K. and Salgado, R. (2003), "Determination of Bearing Capacity of Open-ended Piles in Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.1, pp.46-57. 
  21. Paikowsky, S. G. (1989), A Static Evaluation of Soil Plug behavior with Application to the Pile Plugging Problem, Ph.D. Thesis, Massachusetts Institute of Technology. 
  22. Salot, C., Gotteland, P., and Villard, P. (2009), "Influence of Relative Density on Granular Materials behavior: DEM Simulations of Triaxial Tests", Granular matter, Vol.11, No.4, pp.221-236.