DOI QR코드

DOI QR Code

Evaluation of Injection Degree of Biopolymer Grouting Using Electrical Resistivity

전기비저항을 이용한 바이오폴리머 그라우팅 주입도 평가

  • Jun, Minu (Dept. of Civil & Environmental Engineering, Gachon Univ.) ;
  • Cho, Hyunmuk (Dept. of Civil & Environmental Engineering, Gachon Univ.) ;
  • Ryou, Jae-Eun (Dept. of Civil Engineering, Chungbuk National Univ.) ;
  • Hong, Won-Taek (Dept. Civil & Environmental Engineering, Gachon Univ.)
  • 전민우 (가천대학교 토목환경공학과) ;
  • 조현묵 (가천대학교 토목환경공학과) ;
  • 유재은 (충북대학교 토목공학부 ) ;
  • 홍원택 (가천대학교 토목환경공학과)
  • Received : 2024.06.11
  • Accepted : 2024.07.08
  • Published : 2024.08.31

Abstract

Monitoring the injection degree of biopolymers in soils is required in estimating the performance of biopolymer-treated grounds. In this study, the degree of saturation and injection process of biopolymer solutions in sandy soils were evaluated using electrical resistivity. To assess the changes in electrical resistivity according to the contents of the biopolymer solutions, electrical resistivities were measured for Jumunjin sand-xanthan gum biopolymer solution (weight concentration of 0.5%) mixtures with different degrees of saturation of 20%, 40%, 60%, 80%, and 100%. In addition, electrical resistivities were measured at eight layers in oven-dried Jumunjin sand during the upward injection of the xanthan gum biopolymer solution to monitor the injection process. Experimental results showed that the electrical resistivity decreased as the degree of saturation of the mixture increased, and their relationship was constructed. During the injection of the xanthan gum biopolymer solution into the sandy soils, the electrical resistivity decreased and converged and the degree of saturation at each layer could be estimated on the basis of the above-constructed relationship. This study demonstrated that electrical resistivity may be an effective physical property for monitoring the injection degree of biopolymer solutions in the ground.

바이오폴리머 주입에 의한 보강효과 예측을 위하여 대상지반 내 바이오폴리머의 주입도 모니터링이 요구된다. 본 연구에서는 전기비저항을 이용하여 사질토 내 바이오폴리머 수용액의 포화도 및 주입경과를 평가하였다. 사질토 내 바이오폴리머 수용액 포화도에 따른 전기비저항의 변화를 평가하고자 중량농도 0.5%의 잔탄검 바이오폴리머 수용액과 주문진 표준사를 이용하여 조성된 포화도 20%, 40%, 60%, 80%, 100% 시료의 전기비저항을 측정하였다. 또한, 주입경과 평가를 위하여 노건조 주문진 표준사 시료에 대한 바이오폴리머 수용액 상방향 주입 중 8개 층에서 전기비저항을 측정하였다. 포화도에 따른 전기비저항 측정 결과, 시료의 포화도가 증가함에 따라 전기비저항은 감소하였으며, 해당 결과를 바탕으로 포화도와 전기비저항 사이의 상관관계가 수립되었다. 주입경과에 따른 전기비저항 측정 결과, 바이오 폴리머 수용액이 시료에 침투함에 따라 전기비저항은 감소 및 수렴하였으며, 앞서 수립된 포화도-전기비저항 상관관계를 바탕으로 주입과정 중 바이오폴리머 수용액 주입도 평가가 가능하였다. 본 연구는 바이오폴리머 처리 구간에 대한 전기비저항 평가가 바이오폴리머의 주입 양상 모니터링에 활용될 수 있음을 보여준다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A4A3029737).

References

  1. AL-Kinani, A. M. and Ahmed, M. D. (2020, February), "Field Study of the Effect of Jet Grouting Parameters on Strength based on Tensile and Unconfined Compressive Strength", In IOP Conference Series: Materials Science and Engineering (Vol.737, No.1, p.012083). IOP Publishing. 
  2. Archie, G. E. (1942), "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics", Transactions of the AIME, Vol.145, No.1, pp.54-62. 
  3. Banton, O., Cimon, M. A., and Seguin, M. K. (1997), "Mapping Field-scale Physical Properties of Soil with Electrical Resistivity", Soil Science Society of America Journal, Vol.61, No.4, pp.1010-1017. 
  4. Boulanger, R. W. and Hayden, R. F. (1995), "Aspects of Compaction Grouting of Liquefiable Soil", Journal of Repair of Undersea Concrete Using Biopolymer-assisted Plant Urease Geotechnical Engineering, Vol.121, No.12, pp.844-855. 
  5. Bradford, J. H. (2007), "Frequency-dependent Attenuation Analysis of Ground-penetrating Radar Data", Geophysics, Vol.72, No.3, pp. J7-J16. 
  6. Cabalar, A. F., Wiszniewski, M., and Skutnik, Z. (2017), "Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear behavior of a Sand", Soil Mechanics and Foundation Engineering, Vol.54, pp.356-361. 
  7. Campanella, R. G. and Weemees, I. (1990), "Development and Use of an Electrical Resistivity Cone for Ground Contamination Studies", Canadian Geotechnical Journal, Vol.27, No.5, pp.557-567. 
  8. Chang, I., Im, J., Prasidhi, A.K., and Cho, G-C. (2015), "Effects of Xanthan Gum Biopolymer on Soil Strengthening", Construction and Building Materials, Vol.74, pp.65-72. 
  9. Cho, I. K. (2020), "Recent Trend in Electrical Resistivity Method", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol.57, No.5, pp.506-526. 
  10. Chun, O. H., Lee, J. S., Park, M. C., Bae, S. G., and Yoon, H. K. (2013), "Estimation of Slime Thickness of Bored Piles by Using Borehole Electrical Resistivity Method", Journal of the Korean Geotechnical Society, Vol.29, No.3, pp.51-60. 
  11. Dagliya, M. and Satyam, N. (2024), "Large Scale Study on Influence of Biopolymer to Mitigate Wind Induced Sand Erosion with Durability Analysis", Soil and Tillage Research, Vol.236, 105942. 
  12. Fatehi, H., Ong, D., Yu, J., and Chang, I. (2021), "Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review", Geosciences, Vol.11, 291. 
  13. Green, R. (1974), "The Seismic Refraction Method-A Review", Geoexploration, Vol.12, No.4, pp.259-284. 
  14. Han, C., Wei, J., Zhang, W., Yang, F., Yin, H., Xie, D., and Xie, C. (2022), "Quantitative Permeation Grouting in Sand Layer with Consideration of Grout Properties and Medium Characteristics", Construction and Building Materials, Vol.327, 126947. 
  15. Han, J. (2015), "Principles and Practice of Ground Improvement", John Wiley & Sons. 
  16. Hong, W. T., Kang, S., and Lee, J. S. (2015), "Application of Ground Penetrating Radar for Estimation of Loose Layer", Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48. 
  17. Hong, W. T., Woo, G., Park, M. C., and Lee, J. S. (2020), "Slime-meter for Assessment of Slime Thickness based on Electrical Properties in Borehole", Automation in Construction, Vol.119, 103328. 
  18. Jorne, F. and Henriques, F. M. (2016), "Evaluation of the Grout Injectability and Types of Resistance to Grout Flow", Construction and Building Materials, Vol.122, pp.171-183 
  19. Kazemian, S. and Huat, B. B. (2009), "Assessment and Comparison of Grouting and Injection Methods in Geotechnical Engineering", European Journal of Scientific Research, Vol.27, No.2, pp.234-247. 
  20. Kibria, G. and Hossain, M. S. (2012), "Investigation of Geotechnical Parameters Affecting Electrical Resistivity of Compacted Clays", Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.12, pp.1520-1529 
  21. Kim, B. K., Lee, J. S., Park, J. J., and Kim, S. Y. (2024), "Response of Sand Added with Various Biopolymer Contents under Repetitive Loading and Freeze-thaw Cycles", Transportation Geotechnics, 101280. 
  22. Kim, H. J. (2006), "Electrical Resistivity Methods in Korea", Economic and Environmental Geology, Vol.39, No.4, pp.473-483. 
  23. Kim, J. H., Yoon, H. K., Cho, S. H., Kim, Y. S., and Lee, J. S. (2011), "Four Electrode Resistivity Probe for Porosity Evaluation", Geotechnical Testing Journal, Vol.34, No.6, pp.1-8. 
  24. Kim, J. H., Yoon, H. K., Choi, Y. K., and Lee, J. S. (2009), "Porosity Evaluation of Offshore Soft Soils by Electrical Resistivity Cone Probe", Journal of the Korean Geotechnical Society, Vol.25, No.2, pp.45-54. 
  25. Li, Z., Hu, K., Feng, G., Long, W., Luo, Q., and Chen, C. (2024), "Repair of Undersea Concrete Using Biopolymer-assisted Plant Urease", Journal of Building Engineering, 109825. 
  26. McCarter, W. J. (1984), "The Electrical Resistivity Characteristics of Compacted Clays", Geotechnique, Vol.34, No.2, pp.263-267. 
  27. Saleh, S., Yunus, N. Z. M., Ahmad, K., and Ali, N. (2019), "Improving the Strength of Weak Soil Using Polyurethane Grouts: A Review", Construction and Building Materials, Vol.202, pp. 738-752. 
  28. Park S. G., Farooq M., and Kim J. H. (2008), "Changes of the Electrical Resistivity Caused by the Grout Content of Soil Sample", Journal of the Korean Society for Geosystem Engineering, Vol.45, No.6, pp.700-706 
  29. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G. (2005), "Electrical Resistivity Survey in Soil Science: A Review", Soil and Tillage Research, Vol.83, No.2, pp.173-193. 
  30. Pyo, W. M., Lee, J. Y., Lee, J. S., and Hong, W. T. (2018), "Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration", Journal of the Korean Geotechnical Society, Vol.34, No.2, pp.19-32. 
  31. Widmann, R. (1996), "International Society for Rock Mechanics Commission on Rock Grouting", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.33, No.8, pp.803-847 Pergamon. 
  32. Zhong, D. H., Yan, F. G., Li, M. C., Huang, C. X., Fan, F., and Tang, J. F. (2015), "A Real-time Analysis and Feedback System for Quality Control of Dam Foundation Grouting Engineering", Rock Mechanics and Rock Engineering, Vol.48, pp.1947-1968.