DOI QR코드

DOI QR Code

Synoptic-Scale Meteorological Clustering Analysis of Volcanic Ash Inflow into the Korean Peninsula Following the Eruption of Mt. Baekdu

  • Da Eun Chae (Department of Earth Science, Pusan National University) ;
  • Hearim Jeong (Department of Earth Science, Pusan National University) ;
  • Soon-Hwan Lee (Department of Earth Science Education, Pusan National University)
  • 투고 : 2024.07.22
  • 심사 : 2024.08.08
  • 발행 : 2024.08.31

초록

To investigate the frequency and trajectories of volcanic ash from Mt. Baekdu reaching the Korean Peninsula, a forward trajectory analysis was conducted using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Through a cluster analysis of air parcel trajectories, we identified the main pathways of the volcanic ash from Mt. Baekdu entering the Korean Peninsula and analyzed the synoptic meteorological conditions on those days. The frequency of volcanic ash reaching the Korean Peninsula was 82 times at an altitude of 1000 m and 70 times at 2000 m, with an increasing trend from 2016 to 2022. This increase is attributed to the weakening of westerly winds and the strengthening of north-south winds due to global warming. Five and three trajectory clusters were classified at 1000 m and 2000 m, respectively. At a starting altitude of 1000 m, most air parcels originating from Mt. Baekdu entered the Korean Peninsula under weather conditions (C2, C3) where the pressure gradient from the northwest to the southeast was small, resulting in weak northerly winds. C2 and C3 showed shorter trajectories, which occurred in all seasons, except summer. At a starting altitude of 2000 m, air parcels mostly passed over the Korean Peninsula in a synoptic pattern similar to that at 1000 m in altitude; however, the air parcels had simpler paths and less frequent inflow. C2, at a starting altitude of 2000 m, originates from Mount Baekdu, crosses the center of the Korean Peninsula, and continues to the central region. At a starting altitude of 1000 m, volcanic ash can enter the Korean Peninsula when there is no strong low-pressure system to the southeast of the Korean Peninsula, whereas at 2000 m, volcanic ash can enter the Korean Peninsula when the Siberian high-pressure system is weak.

키워드

과제정보

This work was supported by a 2-Year Research Grant of Pusan National University

참고문헌

  1. An, H. Y., Kang, Y. H., Song, S. K., Bang, J. H., Kim, Y. K., 2015, Atmospheric dispersion of radioactive material according to the local wind patterns around the Kori nuclear power plant using WRF/HYSPLIT model, J. Eviron. Sci., 24(1), 81-96.
  2. Hafner, W. D., Solorzano, N. N., Jaffe, D. A., 2007, Analysis of rainfall and fine aerosol data using clustered trajectory analysis for National Park sites in the Western US, Atmos., Environ., 41(14), 3071-3081.
  3. Han, H. G., Baek, W. K., Jung, H. S., Kim, M. R., Lee, M. J., 2019, A Study on the volcanic ash damage sector selection based on the analysis of overseas cases and domestic spatial information, Korean J. Remote Sens., 35(5), 751-761.
  4. Jiang, Z. H., Yu, S. Y., Yoon, S. M., Choi, K. H., 2013, Damage and socio-economic impact of volcanic ash, J. Korean Earth Sci. Soc., 34(6), 536-549.
  5. Jung, W. S., Park, J. K., Lee, B. R., Kim, E. B., 2013, Analysis on the PM10 transportation route in Gimhae region using the HYSPLIT model, J. Eviron. Sci., 22(8), 1043-1052.
  6. Kim, D. Y., Sunwoo, Y., Park, J. E., Lee, S. S., Kim, Y. J., 2016, Study on air quality worst-case scenarios due to volcanic eruption near the Korean Peninsula using trajectory analysis, Journal of the Wind Engineering Institute of Korea, 20(1), 19-28.
  7. Kim, N. S., An Analysis on influence area by the simulation over Mt. Baekdu eruption, Journal of KARG, 17(3), 348-356.
  8. Lee, J. Y., Lee, S. S., Son, H. A., Hwang, S. T., Heo, D. Y., 2017, Probabilistic estimation of spatial distribution of volcanic ashes from Mt. Baekdu and Mt. Aso, Journal of the Wind Engineering Institute of Korea, 21(3), 113-120.
  9. Lee, S. H., Jang, E. S., Lee, H. M., 2012, A Case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baegdu, J. Korean Earth Sci. Soc., 33(3), 280-293.
  10. Lee, S. H., Yun, S. H., 2011, Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu, J. Korean Earth Sci. Soc., 32(4), 360-372.
  11. Lee, S. S., Ham, H. J., Kim, Y. J., 2023, Probabilistic analysis of influence of volcanic ash from volcanoes adjacent to Korean Peninsula,Journal of the Wind Engineering Institute of Korea, 27(4), 134-151.
  12. Lee, S. Y., Suh, G. Y., Park, S. Y., Kim, Y. S., Nam, J. H., Yu, S. H., Park, J. H., Kim, S. J., Kim, Y. S., Park, S. Y., Yun, J. Y., Jang, Y. J., Min, S. W., Noh, S. J., Kim, S. C., Lee, K. S., Chung D. Y., 2018, Prediction of dispersal directions and ranges of volcanic ashes from the possible eruption of Mt. Baekdu, Korean J. Soil Sci. Fert., 51(1), 16-27.
  13. Ma, Y. F., Du, B. Y., Wang, Q., Hu, Q. Q., Bian, Y. S., Wang, M. B., Jin, S. Y., 2019, Analysis of the atmospheric pollution transport pathways and sources in Shenyang, based on the HYSPLIT model, IOP Conf. Ser. Earth Environ. Sci., 351, 012030.
  14. Man, W., Zuo, M., Zhou, T., Fasullo, J. T., Bethke, I., Chen, X., Zou, L., Wu1, B., 2021, Potential influences of volcanic eruptions on future global land monsoon precipitation changes, Earth's Future, 9(3), e2020EF001803.
  15. Nam, T. C., Ryoo, J. Y., Ryou, J. W., Kim, H. H., Park, J. Y., Kang, H. J., Kim, H. Y., Kang, K. S., Mun, D. H., Choi, J. h., Kim, H. J., 2023, A Study on the characteristics of PM2.5 and estimation of source identification in Jeollabuk-do: Focused on Iksan city, J. Korean Soc. Atmos. Environ., 39(6), 985-1006.
  16. Nauth, D., Loughner, C. P., Tzortziou, M., 2023, The Influence of synoptic-scale wind patterns on column-integrated nitrogen dioxide, ground-level ozone, and the development of sea-breeze circulations in the New York City metropolitan area, J. Appl. Meteorol. Climatol., 62(6), 645-655.
  17. Nawaz, H., Tariq, S., Haq, Z. U., Mehmood, U., 2023, Identifying the natural and anthropogenic drivers of absorbing aerosols using OMI data and HYSPLIT model over South Asia, Air Quality, Atmosphere and Health, 16, 2553-2577.
  18. Park, J. E., Kim, H. R., Sunwoo, Y., 2020, Analysis of PM2.5 impact and human exposure from worst-case of Mt. Baekdu volcanic eruption, Korean J. Remote Sens., 36(5), 1267-1276.
  19. Park, K. H., Min, B. I., Kim, S. R., Kim, J. Y., Suh, K. S., 2020, Impacts of volcanic eruptions around the Korean Peninsula: A Long-term simulation study for hypothetical eruption scenarios, J. Korean Soc. Hazard Mitig., 20(5), 361-371.
  20. Qor-el-aine, A., Beres, A., Geczi, G., 2021, Dust storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) using HYSPLIT, Atmos. Sci. Lett., 23(4), e1076.
  21. Ramirez-Hrrera, M. T., Coca, O., Vargas-Espinosa, V., 2022, Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha'apai volcano eruption, Tonga, Pure Appl. Geophys., 179, 1117-1137.
  22. Seo, J. B., Kang, S. R., Kim, M. C., 2016, Predicting the hazard area of the volcanic ash based on meteorological fields and the impact of weather pattern on diffusional pathway of volcanic ash, Journal of the Wind Engineering Institute of Korea, 20(1), 49-55.
  23. Su, L., Yuan, Z., Fung, J. C. H., Lau, A. K. H., 2015, A Comparison of HYSPLIT backward trajectories generated from two GDAS datasets, Sci. Total Environ., 506-507, 527-537.
  24. Sun, J. S., Ahn, J. K., Lee, H. S., Hwang, E. H., Lee, D. K., 2020, Analysis of Japanese volcanic ash dispersion on the Korean Peninsula using satellite imagery, J. Korean Soc. Hazard Mitig., 20(3), 269-275.
  25. Yun, S. H., 2013, Volcanological interpretation of historical eruptions of Mt. Baekdusan volcano, J. Korean Earth Sci. Soc., 34(6), 456-469.
  26. Yun, S. H., Lee, J. H., 2012, Analysis of unrest signs of activity at the Baegdusan Volcano, Jour. Petrol. Soc. Korea, 21(1), 1-12.