DOI QR코드

DOI QR Code

Hydrated Vanadium Pentoxide/Graphene Oxide Nanobelts for Enhanced Electrochemical Performance

  • Hyegyeong Hwang (Department of Materials Convergence and System Engineering, Changwon National University) ;
  • Jinsung Kwak (Department of Physics & Department of Materials Convergence and System Engineering, Changwon National University)
  • Received : 2024.07.22
  • Accepted : 2024.08.14
  • Published : 2024.08.27

Abstract

Transition metal oxide-based materials have mainly been studied as electrodes for energy storage devices designed to meet essential energy demands. Among transition metal oxide-based materials, hydrated vanadium pentoxide (V2O5·nH2O), a vanadium oxide material, has demonstrated great electrochemical performance in the electrodes of energy storage devices. Graphene oxide (GO), a carbon-based material with high surface area and high electrical conductivity, has been added to V2O5·nH2O to compensate for its low electrical conductivity and structural instability. Here, V2O5·nH2O/GO nanobelts are manufactured with water without adding acid to ensure that the GO is uniformly dispersed, using a microwave-assisted hydrothermal synthesis. The resulting V2O5·nH2O/GO nanobelts exhibited a high specific capacitance of 206 F/g and more stable cycling performance than V2O5·nH2O without GO. The drying conditions of the carbon paper electrodes also resulted in more stable cycling performance when conducted at high vacuum and high temperature, compared with low vacuum and room temperature conditions. The improvement in electrochemical performance due to the addition of GO and the drying conditions of carbon paper electrodes indicate their great potential value as electrodes in energy storage devices.

Keywords

Acknowledgement

This research was funded by the 'Lecturer-Graduate Student-Faculty Collaboration Research Project' at Changwon National University in 2024.

References

  1. F. M. N. U. Khan, M. G. Rasul, A. S. M. Sayem and N. K. Mandal, J. Energy Storage, 71, 108033 (2023). 
  2. D. Lemian and F. Bode, Energies, 15, 5683 (2022). 
  3. J. Li, P. Ruan, X. Chen, S. Lei, B. Lu, Z. Chen and J. Zhou, ACS Energy Lett., 8, 2904 (2023). 
  4. M. Weng, J. Zhou, Y. Ye, H. Qiu, P. Zhou, Z. Luo and Q. Guo, J. Colloid Interface Sci., 647, 277 (2023). 
  5. S. Patel, A. Ghosh and P. K. Ray, J. Energy Storage, 73, 109082 (2023). 
  6. L. Wei, S. T. Liu, M. Balaish, Z. Li, X. Y. Zhou, J. L. Rupp and X. Guo, Mater. Today, 58, 297 (2022). 
  7. R. R. Zhang, Y. M. Xu, D. Harrison, J. Fyson, F. L. Qiu and D. Southee, Int. J. Autom. Comput., 12, 43 (2015). 
  8. X. Huang, Y. Huang, G. Xu and X. Wang, J. Power Sources, 581, 233488 (2023). 
  9. M. Manikandan, K. Subramani, M. Sathish and S. Dhanuskodi, ChemistrySelect, 3, 9034 (2018). 
  10. B. Nisha, Y. Vidyalakshmi and S. A. Razack, Adv. Powder Technol., 31, 1001 (2020). 
  11. Y. Yuan, J. Zhu, Y. Wang, S. Li, P. Jin and Y. Chen, J. Alloys Compd., 830, 154524 (2020). 
  12. L. Kunhikrishnan and R. Shanmugham, Mater. Charact., 177, 111160 (2021). 
  13. A. Ali, M. Ammar, A. Mukhtar, T. Ahmed, M. Ali, M. Waqas, M. N. Amin and A. Rasheed, J. Electroanal. Chem., 857, 113710 (2020). 
  14. X. Su, G. Feng, L. Yu, Q. Li, H. Zhang, W. Song and G. Hu, J. Mater. Sci.: Mater. Electron., 30, 3545 (2019). 
  15. N. G. Prakash, M. Dhananjaya, A. L. Narayana, D. P. Shaik, P. Rosaiah and O. M. Hussain, Ceram. Int., 44, 9967 (2018). 
  16. J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu and C. Hu, Nano Energy, 57, 379 (2019). 
  17. K. Panigrahi, P. Howli and K. K. Chattopadhyay, Electrochim. Acta, 337, 135701 (2020). 
  18. N. Kumar, A. Juyal, V. Gajraj, S. Upadhyay, N. Priyadarshi, S. Chetana, N. C. Joshi and A. Sen, Inorg. Chem. Commun., 150, 110439 (2023). 
  19. S. Zhao, Y. Sun, G. Jia and J. Cui, Mater. Lett., 350, 134883 (2023). 
  20. Z. Huang, H. Zeng, L. Xue, X. Zhou, Y. Zhao and Q. Lai, J. Alloys Compd., 509, 10080 (2011). 
  21. Y. Chen, P. Lian, J. Feng, Y. Liu, L. Wang, J. Liu and X. Shi, Chem. Eng. J., 429, 132274 (2022). 
  22. H. A. Ghaly, A. G. El-Deen, E. R. Souaya and N. K. Allam, Electrochim. Acta, 310, 58 (2019). 
  23. Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An and L. Mai, J. Mater. Chem. A, 3, 8070 (2015). 
  24. W. Bi, J. Huang, M. Wang, E. P. Jahrman, G. T. Seidler, J. Wang, Y. Wu, G. Gao, G. Wu and G. Cao, J. Mater. Chem. A, 7, 17966 (2019). 
  25. Y. Zhang, X. Yuan, T. Lu, Z. Gong, L. Pan and S. Guo, J. Colloid Interface Sci., 585, 347 (2021). 
  26. A. Lazauskas, L. Marcinauskas and M. Andrulevicius, ACS Appl. Mater. Interfaces, 12, 18877 (2020). 
  27. A. S. Etman, Z. Wang, Y. Yuan, L. Nyholm and J. Rosen, Energy Technol., 8, 2000731 (2020). 
  28. Z. D. Geng and Y. Wang, J. Solid State Electrochem., 19, 3131 (2015). 
  29. Y. Fan, Y. Yu, P. Wang, J. Sun, M. Hu, J. Sun, Y. Zhang and C. Huang, J. Colloid Interface Sci., 633, 333 (2023). 
  30. K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu and Z. Liu, Electrochim. Acta, 116, 111 (2014). 
  31. D. Dhamodharan, P. P. Ghoderao, V. Dhinakaran, S. Mubarak, N. Divakaran and H. S. Byun, J. Ind. Eng. Chem., 106, 20 (2022). 
  32. R. Azadvari, S. Mohammadi, A. Habibi, S. Ahmadi and Z. Sanaee, J. Phys. D: Appl. Phys., 57, 045501 (2023). 
  33. T. Gao, F. Zhou, W. Ma and H. Li, Electrochim. Acta, 263, 85 (2018). 
  34. M. Liu, J. Niu, Z. Zhang, M. Dou and F. Wang, Nano Energy, 51, 366 (2018). 
  35. W. Avansi Jr., C. Ribeiro, E. R. Leite and V. R. Mastelaro, Cryst. Growth Des., 9, 3626 (2009). 
  36. Z. Feng, Y. Zhang, J. Sun, Y. Liu, H. Jiang, M. Cui, T. Hu and C. Meng, Chem. Eng. J., 433, 133795 (2022). 
  37. H. Han, Y. Cheng, C. Fang, T. Zhao, J. Liu and H. Du, ACS Appl. Nano Mater., 6, 14680 (2023). 
  38. W. Jiang, J. Ni, K. Yu and Z. Zhu, Appl. Surf. Sci., 257, 3253 (2011). 
  39. G. R. Mutta, S. R. Popuri, P. Ruterana and J. Buckman, J. Alloys Compd., 706, 562 (2017). 
  40. M. Saini, B. S. Dehiya, A. Umar and M. S. Goyat, Ceram. Int., 45, 18452 (2019). 
  41. B. Li, Y. Xu, G. Rong, M. Jing and Y. Xie, Nanotechnology, 17, 2560 (2006). 
  42. C. J. Shih, S. Lin, R. Sharma, M. S. Strano and D. Blankschtein, Langmuir, 28, 235 (2012). 
  43. H. Liu, Y. Gao, J. Zhou, X. Liu, Z. Chen, C. Cao, H. Luo and M. Kanehira, J. Solid State Chem., 214, 79 (2014). 
  44. S. R. Popuri, M. Miclau, A. Artemenko, C. Labrugere, A. Villesuzanne and M. Pollet, Inorg. Chem., 52, 4780 (2013). 
  45. T. H. Wu, J. A. Chen and J. H. Su, J. Colloid Interface Sci., 654, 308 (2023). 
  46. S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts and S. K. Deb, Solid State Ionics, 165, 111 (2003). 
  47. F. Urena-Begara, A. Crunteanu and J. P. Raskin, Appl. Surf. Sci., 403, 717 (2017). 
  48. N. M. Abd-Alghafour, N. M. Ahmed, Z. Hassan and M. A. Almessiere, J. Phys.: Conf. Ser., 1083, 012036 (2018). 
  49. N. M. Abd-Alghafour, G. A. Naeem and S. M. Mohammad, J. Phys.: Conf. Ser., 1535, 012046 (2020). 
  50. R. Parmar, D. B. de Freitas Neto, E. Y. Matsubara, R. Gunnella and J. M. Rosolen, Sustainable Energy Fuels, 4, 3951 (2020). 
  51. K. Krishnamoorthy, M. Veerapandian, R. Mohan and S. J. Kim, Appl. Phys. A, 106, 501 (2012). 
  52. S. S. Nanda, D. K. Yi and K. Kim, Sci. Rep., 6, 28443 (2016). 
  53. R. Li, Y. Wang, C. Zhou, C. Wang, X. Ba, Y. Li, X. Huang and J. Liu, Adv. Funct. Mater., 25, 5384 (2015). 
  54. S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu and S. X. Dou, Energy Environ. Sci., 4, 1855 (2011). 
  55. D. Chen, R. Yi, S. Chen, T. Xu, M. L. Gordin, D. Lv and D. Wang, Mater. Sci. Eng., B, 185, 7 (2014). 
  56. M. Fu, Q. Zhuang, Z. Zhu, Z. Zhang, W. Chen, Q. Liu and H. Yu, J. Alloys Compd., 862, 158006 (2021).