DOI QR코드

DOI QR Code

Performance evaluation of underground box culverts under foundation loading

  • Bin Du (Civil & Architecture Engineering Xi'an Technological University) ;
  • Bo Hao (School of Mechanical Engineering and Automation, Northeastern University) ;
  • Xuejing Duan (Marine Engineering Department, Weihai Marine Vocational College) ;
  • Wanjiong Wang (School of Mechanical Engineering and Automation, Northeastern University) ;
  • Mohammad Roohani (Faculty of Geotechnical Engineering, Civil Engineering Department, University of Zanjan)
  • 투고 : 2024.04.20
  • 심사 : 2024.08.06
  • 발행 : 2024.08.25

초록

Buried box culverts are crucial elements of transportation infrastructure. However, their behavior under foundation loads is not well understood, indicating a significant gap in existing research. This study aims to bridge this gap by conducting a detailed numerical analysis using the Finite Element Method and Abaqus software. The research evaluates the behavior of buried box culverts by examining their interaction with surrounding soil and the pressures from surface foundation loads. Key variables such as embedment depth, culvert wall thickness, concrete material properties, foundation pressure, foundation width, soil elastic modulus, and friction angle are altered to understand their combined effects on structural response. The methodology employs a validated 2D numerical model under plane strain conditions. Parametric studies highlight the critical role of culvert depth (H) in influencing earth pressure and bending moments. Foundation pressure and width demonstrate complex interdependencies affecting culvert behavior. Variations in culvert materials' elastic modulus show minimal impact. It was found that the lower wall of the buried culvert experiences higher average pressure compared to the other two walls, due to the combined effects of the culvert's weight and down drag forces on the side walls. Furthermore, while the pressure distribution on the top and bottom walls is parabolic, the pressure on the side walls follows a different pattern, differing from that of the other two walls.

키워드

참고문헌

  1. ABAQUS. (ver. 2018), Standard User's Manual. In Dassault Systemes Simulia Corporation.
  2. Abuhajar, O., El Naggar, H. and Newson, T. (2015a), "Experimental and numerical ivestigations of the effect of buried box culverts on earthquake excitation", Soil Dyn. Earthq. Eng., 79(1), 130-148. https://doi.org/10.1016/j.soildyn.2015.07.015.
  3. Abuhajar, O., El Naggar, H. and Newson, T. (2015b), "Static soil culvert interaction the effect of box culvert geometric configurations and soil properties", Comput. Geotech., 69, 219-235. https://doi.org/10.1016/j.compgeo.2015.05.005.
  4. Abuhajar, O., El Naggar, H. and Newson, T. (2016), "Numerical modeling of soil and surface foundation pressure effects on buried box culvert behavior", J. Geotech. Geoenviron. Eng., 142(12), 04016072. https://doi.org/10.1061/(ASCE)GT.19435606.0001567.
  5. Abuhajar, O., Newson, T. and El Naggar, H. (2015), "Scaled physical and numerical modelling of static soil pressures on box culverts", Can. Geotech. J., 52(11), 1637-1648. https://doi.org/10.1139/cgj-2014-0493.
  6. Acharya, R., Han, J., Brennan, J.J., Parsons, R.L. and Khatri, D.K. (2014), "Structural response of a low-fill box culvert under static and traffic loading", J. Perform. Constr. Fac., 30(1), 04014184. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000690
  7. Acharya, R., Han, J. and Parsons, R.L. (2016), "Numerical analysis of low-fill box culvert under rigid pavement subjected to static traffic loading", Int. J. Geomech., 16(5), 04016016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000652
  8. Ahmed, A.O.M. and Alarabi, E. (2011), "Development formulation for structural design of concrete box culverts", Pract. Period. Struct.Des. Constr., 16(2), 48-55. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000075.
  9. Al-Zaidee, S.R., Alsalmani, A.H. and Salam, A. (2020), "Effects of soil-structure interaction and different simulation on the response of concrete box culverts", IOP Conference Series: Materials Science and Engineering., https://doi.org/10.1088/1757-899X/901/1/012009. 
  10. Almasabha, G., Shehadeh, A., Alshboul, O. and Al Hattamleh, O. (2023), "Structural performance of buried reinforced concrete pipelines under deep embankment soil", Constr. Innov., https://doi.org/10.1108/CI-10-2021-0196.
  11. Awwad, E., Mabsout, M., Sadek, S., and Tarhini, K. (2000), "Finite element analysis of concrete box culverts", In Computing in Civil and Building Engineering (2000), 1051-1053. https://doi.org/10.1061/40513(279)136.
  12. Aziz, M., Khan, T.A. and Ahmed, T. (2017), "Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan", Geomech. Eng., 13(3), 475-488. https://doi.org/10.12989/gae.2017.13.3.475.
  13. Bennett, R.M., Wood, S.M., Drumm, E.C. and Rainwater, N.R. (2005), "Vertical loads on concrete box culverts under high embankments", J. Bridge Eng., 10(6), 643-649. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(643).
  14. Binger, W. (1947), "Discussion to 'Underground conduits-An appraisal of modern research'", Proc. Am. Soc. Civ. Eng., https://doi.org/10.1061/TACEAT.0006164.
  15. Bryden, P., El Naggar, H. and Valsangkar, A. (2014), "Soil-structure interaction of very flexible pipes: Centrifuge and numerical investigations", Int. J. Geomech., 15(6), 04014091. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000442.
  16. Cheng, Q.Y. and Li, Y.G. (2015), "Finite element analysis of the soil pressure in sandy soil at the top of pipe culvert", Appl. Mech. Mater., https://doi.org/10.4028/www.scientific.net/AMM.744-746.1077.
  17. Esmaeili-Falak, M. and Sarkhani Benemaran, R. (2024), "Application of optimization-based regression analysis for evaluation of frost durability of recycled aggregate concrete", Struct. Concrete, https://doi.org/10.1002/suco.202300566.
  18. Esmaeili-Falak, M. and Sarkhani Benemaran, R. (2024), "Ensemble extreme gradient boosting based models to predict the bearing capacity of micropile group", Appl. Ocean Res., 104149. https://doi.org/10.1016/j.apor.2024.104149.
  19. Evans, C.H. (1983), An examination of arching in granular soils (Doctoral dissertation, Massachusetts Institute of Technology).
  20. Hassankhani, E. (2020), Applied Pressure on Box Culverts Buried in Rigid Trenches Using Induced Trench Method [University of Tabriz]. Tabriz, Iran.
  21. Hassankhani, E. and Esmaeili-Falak, M. (2024), "Soil-structure interaction for buried conduits influenced by the coupled effect of the protective layer and trench installation", J. Pipe. Syst. Eng. Pract., https://doi.org/https://doi.org/10.1061/JPSEA2/PSENG1547.
  22. Hassankhani, E. and Halabian, A.M. (2018), "Parametric study of concrete-face performance in cfrds considering hardening behavior of rockfill material", Sharif J. Civil Eng., 34(3.1), 37-47. https://doi.org/10.24200/j30.2018.1409.
  23. Hassankhani, E., Moradi, G. and Halabian, A.M. (2016), "Design of a test box to study of buried culverts in trenches", Proceedings of the 5th International Conference on Geotechnical Engineering and Soil Mechanics., Tehran, Iran. https://doi.org/10.12989/gae.2023.34.5.507.
  24. Helwany, S. (2007), Applied soil mechanics with ABAQUS applications. John Wiley & Sons. Book.
  25. Hugel, H., Henke, S. and Kinzler, S. (2008), "High-performance Abaqus simulations in soil mechanics", Abaqus User Conference.
  26. Jiao, N., Wan, X., Ding, J., Zhang, S. and Liu, J. (2024), "Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum", Geomech Eng, 36(2), 131-143. https://doi.org/10.12989/gae.2024.36.2.131.
  27. Jin, D., Yang, Y., Zhang, R., Yuan, D. and Kang, Z. (2024), "Effect of the support pressure modes on face stability during shield tunneling", Geomech Eng, 36(5), 417-426. https://doi.org/10.12989/gae.2024.36.5.417.
  28. Johnson, N. (2023), "Soil Structure interaction of corrugated box culvert", http://hdl.handle.net/10222/83281.
  29. Katona, M.G. and Vittes, P.D. (1982), "Soil-structure analysis and evaluation of buried box-culvert designs", Transport. Res, Record, 878, 1-7. http://worldcat.org/isbn/0309034663
  30. Kim, K. and Yoo, C.H. (2005), "Design loading on deeply buried box culverts", J. Geotech. Geoenviron. Eng., 131(1), 20-27. https://doi.org/10.1061/(ASCE)10900241(2005)131:1(20).
  31. Li, L., Aubertin, J.D. and Dube, J.S. (2014), "Stress distribution in a cohesionless backfill poured in a silo", Open Civil Eng. J., 8(1), 1-8. https://doi.org/10.2174/1874149501408010001.
  32. Li, Y., Tang, X., Yang, S.A. and Ding, Y. (2023), "Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models", Geomech Eng, 33(5), 439-451. https://doi.org/10.12989/gae.2023.33.5.439.
  33. Liang, R. and Bayrami, B. (2023), "Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms", Steel Compos. Struct., 49(1), 91-107. https://doi.org/10.12989/scs.2023.49.1.091.
  34. Maekawa, K., Zhu, X., Chijiwa, N. and Tanabe, S. (2016), "Mechanism of long-term excessive deformation and delayed shear failure of underground RC box culverts", J. Adv. Concrete Technol.., 14(5), 183-204. https://doi.org/10.3151/jact.14.183.
  35. McAffee, R. and Valsangkar, A. (2005), "Performance of an induced trench installation", Transport. Res. Record: J. Transport. Res. Board, (1936), 230-237.
  36. Moradi, G., Hassankhani, E. and Halabian, A.M. (2020), "Investigation of applied earth load on buried box culverts in trenches using induced trench method under embankment pressure", Sharif J. Civil Eng., 35(4.2), 53-65. https://doi.org/10.24200/j30.2018.5720.2271
  37. Moradi, G., Hassankhani, E. and Halabian, A.M. (2022), "Experimental and numerical analyses of buried box culverts in trenches using geofoam", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering., 175(3), 311-322. https://doi.org/10.1680/jgeen.19.00288.
  38. Nawel, M. and Salah, M. (2015), "Numerical modeling of two parallel tunnels interaction using three-dimensional finite elements method", Geomech. Eng., 9(6), 775-791. https://doi.org/10.12989/gae.2015.9.6.775.
  39. Oh, J., Moon, T., Canbulat, I. and Moon, J.S. (2019), "Design of initial support required for excavation of underground cavern and shaft from numerical analysis", Geomech. Eng., 17(6), 573-581. https://doi.org/10.12989/gae.2019.17.6.573.
  40. Orton, S.L., Loehr, J.E., Boeckmann, A. and Havens, G. (2015), "Live-load effect in reinforced concrete box culverts under soil fill", J. Bridge Eng., 20(11), 04015003. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000745
  41. Pimentel, M., Costa, P., Felix, C. and Figueiras, J. (2009), "Behavior of reinforced concrete box culverts under high embankments", J. Struct. Eng.., 135(4), 366-375. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(366).
  42. Selig, E.T. (1972), "Subsurface soil-structure interaction: A synopsis. Highw", Res. Rec, 413, 1-4.
  43. Spangler, M.G. (1933), The supporting strength of rigid pipe culverts: Iowa State College.
  44. Spangler, M.G. and Handy, R.L. (1973), Soil engineering: Intext Educational Publishers.
  45. Stone, K. and Newson, T. (2022), "Arching effects in soil-structure interaction", In Physical Modelling in Geotechnics., 935-939. Routledge. Book.
  46. Sukamta, D., Rahardjo, P., Alexander, N. and Wijaya, M. (2023), "Soil-structure interaction of huge RC box culvert under high embankment", IOP Conference Series: Earth and Environmental Science. https://ui.adsabs.harvard.edu/link_gateway/2023E&ES.1249a2003S/doi:10.1088/1755-1315/1249/1/012003.
  47. Sun, L., Hopkins, T.C. and Beckham, T.L. (2011), "Long-term monitoring of culvert load reduction using an imperfect ditch backfilled with geofoam", Transport. Res. Record: J. Transport. Res.Board, 2212(1), 56-64. https://doi.org/10.3141/2212-06
  48. Sun, X., Dong, X., Teng, W., Wang, L. and Hassankhani, E. (2024), "Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength", Steel Compos. Struct., 51(5), 509-527. https://doi.org/10.12989/scs.2024.51.5.509.
  49. Tadros, M.K. (1986), Cost-effective Concrete Box-culvert Design: University of Nebraska-Lincoln, Department of Civil Engineering.
  50. Tafreshi, S.M., Mehrjardi, G.T. and Dawson, A. (2012), "Buried pipes in rubber-soil backfilled trenches under cyclic loading", J. Geotech. Geoenviron. Eng., 138(11), 1346-1356. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000710
  51. Terzaghi, K. (1943), Theoretical soil mechanics, Wiley New York. book
  52. Terzi, N.U., Erenson, C. and Selcuk, M.E. (2015), "Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations", Geomech. Eng., 9(4), 447-464. https://doi.org/10.12989/gae.2015.9.4.447.
  53. Wang, J. and Huang, J. (2021), "Soil pressure reduction by including geofoam: A numerical study", Int. J. Geosynth. Ground Eng., 7(2), 1-12. https://doi.org/10.1007/s40891-021-00268-9.
  54. Wei, H.W., Yang, X.L. and Yu, Z.H. (2012), "Performance of soil pressure on the culvert under high-backfill reinforced with geosynthetics", Adv. Mater. Res., 368(5), 1955-1960. doi:10.4028/www.scientific.net/AMR.368-373.1955.
  55. Wu, L., Li, M., Zhang, J.A., Wang, Z., Yang, X. and Bian, H. (2024), "Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions", Geomech. Eng., 37(1), 49-64. https://doi.org/10.12989/gae.2024.37.1.049.
  56. Xenaki, V. and Athanasopoulos, G. (2001), "Experimental investigation of the interaction mechanism at the EPS geofoam-sand interface by direct shear testing", Geosynth. Int., 8(6), 471-499. https://doi.org/10.1680/gein.8.0204.
  57. Yoo, M., Kwon, S.Y. and Hong, S. (2022), "Dynamic response evaluation of deep underground structures based on numerical simulation", Geomech. Eng., 29(3), 269-279. https://doi.org/10.12989/gae.2022.29.3.269.
  58. Zheng, J. and Li, L. (2024), "Experimental and numerical study on the earth pressure coefficient in a vertical backfilled opening", Geomech Eng, 36(3), 217-229. https://doi.org/10.12989/gae.2024.36.3.217.