DOI QR코드

DOI QR Code

A new prediction model of force evolution behavior of a conical pick by indentation tests

  • Xiang Wang (School of Mechanical Engineering, Chongqing University of Technology) ;
  • Ming S. Gao (School of Mechanical Engineering, Chongqing University of Technology) ;
  • Okan Su (Department of Mining and Mineral Extraction, Zonguldak Bülent Ecevit University) ;
  • Dan Huang (Institute of Mining Engineering, Beijing General Research Inst. of Min. and Metall.)
  • Received : 2024.03.03
  • Accepted : 2024.07.24
  • Published : 2024.08.25

Abstract

In this study, a prediction model for the cutting force evolution in brittle rocks was developed. This model is based on indentation tests using a conical pick at a cutting depth of 9 mm. The behavior of the indentation mechanism was analyzed in three phases by using Evans' cutting mode. The peak values in the force history identified these phases. The variation in the local strength of the rock caused a large offset in the model prediction of chipping. Regression analyses showed that there is a strong power relationship between the upper bound of the cutting force along with chipping and depth of cut. The slope of the three crushing phases has been found to increase sequentially (α123). In addition, a positive correlation existed between the Schmidt hardness and brittleness index that affects the lower and upper bounds of chipping. Consequently, the results clearly demonstrate that the new model can reasonably predict the evolution of the cutting force based on experimental data. These results would be beneficial for engineers to design and select the optimum excavation machine to reduce mechanical vibration and enhance cutting efficiency.

Keywords

References

  1. Altindag, R. (2002), "The evaluation of rock brittleness concept on rotary blast hole drills", J. Southern African Inst. Min. Metall., 102(1), 61-66.
  2. Andreev, G.E. (1995), Brittle failure of rock materials, CRC press.
  3. Balci, C. (2009), "Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation: A case study in Kozyatagi-Kadikoy metro tunnel, Turkey", Tunn. Undergr. Sp. Tech., 24(4), 423-435. https://doi.org/10.1016/j.tust.2008.12.001.
  4. Balci, C. and Bilgin, N. (2007), "Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines", Int. J. Rock Mech. Min. Sci., 44(3), 468-476. https://doi.org/10.1016/j.ijrmms.2006.09.001.
  5. Bao, R.H., Zhang, L.C., Yao, Q.Y. and Lunn, J. (2011), "Estimating the peak indentation force of the edge chipping of rocks using Single point-attack pick", Rock Mech. Rock Eng., 44(3), 339-347. https://doi.org/10.1007/s00603-010-0133-2.
  6. Bilgin, N., Copur, H. and Balci, C. (2014), "Laboratory rock-cutting tests", Mechanical Excavation in Mining and Civil Industries, 77-102.
  7. Bilgin, N., Demircin, M.A., Copur, H., Balci, C., Tuncdemir, H. and Akcin, N. (2006), "Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results", Int. J. Rock Mech. Min. Sci., 43(1), 139-156. https://doi.org/10.1016/j.ijrmms.2005.04.009.
  8. Cheng, Z., Li, G.S., Huang, Z.W., Sheng, M., Wu, X.G. and Yang, J.W. (2019), "Analytical modelling of rock cutting force and failure surface in linear cutting test by single PDC cutter", J. Petroleum Sci. Eng., 177, 306-316. https://doi.org/10.1016/j.petrol.2018.09.023.
  9. Copur, H., Bilgin, N., Balci, C., Tumac, D. and Avunduk, E. (2017), "Effects of different cutting patterns and experimental conditions on the performance of a conical drag tool", Rock Mech. Rock Eng., 50(6), 1585-1609. https://doi.org/10.1007/s00603-017-1172-8.
  10. Copur, H., Bilgin, N., Tuncdemir, H. and Balci, C. (2003), "A set of indices based on indentation tests for assessment of rock cutting performance and rock properties", J. Southern African Inst. Min. Metall., 103(9), 589-599.
  11. Deketh, H., Grima, M.A., Hergarden, I., Giezen, M. and Verhoef, P. (1998), "Towards the prediction of rock excavation machine performance", Bull. Eng. Geo. Env., 57, 3-15. https://doi.org/10.1007/s100640050016.
  12. Entacher, M., Lorenz, S., Galler, R. and Winter, G. (2013), "A new small scale rock cutting test", Rock Mech. Resour. Energ. Environ., 875-880.
  13. Entacher, M. and Rostami, J. (2019), "TBM performance prediction model with a linear base function and adjustment factors obtained from rock cutting and indentation tests", Tunn. Undergr. Sp. Tech., 93. https://doi.org/10.1016/j.tust.2019.103085.
  14. Evans, I. (1962), A Theory of the Basic Mechanics of Coal Ploughing. Mining Research. G. B. Clark, Pergamon, 761-798.
  15. Evans, I. (1984), "A theory of the cutting force for point-attack picks", Int. J. Min. Eng., 2(1), 63-71. https://doi.org/10.1007/BF00880858.
  16. Fattahi, H. and Bayat, N. (2024). "Developing drilling rate index prediction: A comparative study of RVR-IWO and RVR-SFL models for rock excavation projects", Geomech. Eng., 36(2), 111-119. https://doi.org/10.12989/gae.2024.36.2.111.
  17. Goktan, R.M. and Gunes, N. (2005), "A semi-empirical approach to cutting force prediction for point-attack picks", J. Southern African Inst. Min. Metall., 105(4), 257-263.
  18. Goktan, R. (1997), A suggested improvement on Evans' cutting theory for conical bits, 57-61.
  19. Hamzaban, M.T., Rostami, J., Dahl, F., Macias, F.J. and Jakobsen, P.D. (2022), "Wear of cutting tools in hard rock excavation process: A critical review of rock abrasiveness testing methods", Rock Mech. Rock Eng., 56(3), 1843-1882. https://doi.org/10.1007/s00603-022-03187-x.
  20. Huang, D., Wang, X., Su, O., Zheng, Z.J. and Gao, M. (2022), "Study on the cuttability characteristics of granites under conical picks by indentation tests", Bull. Eng. Geol. Environ., 81(5), 192. https://doi.org/10.1007/s10064-022-02703-1.
  21. Hucka, V. and Das, D. (1974), "Brittleness determination of rocks by different methods", Int. J. Rock Mech. Min. Sci. Geomech. Abst.racts, 11(10), 389-392. https://doi.org/10.1016/0148-9062(74)91109-7.
  22. Jiang, B.Y., Zhao, G.F., Gong, Q.M. and Zhao, X.B. (2021), "Three-dimensional coupled numerical modelling of lab-level full-scale TBM disc cutting tests", Tunn. Undergr. Sp. Tech., 114. https://doi.org/10.1016/j.tust.2021.103997.
  23. Kahraman, S., Balci, C., Yazici, S. and Bilgin, N. (2000), "Prediction of the penetration rate of rotary blast hole drills using a new drillability index", Int. J. Rock Mech. Min. Sci., 37(5), 729-743. https://doi.org/10.1016/S1365-1609(00)00007-1.
  24. Kazi, A., Kao, Y.T. and Tai, B.L. (2021), "Comparison of rotary and linear cutting methodology in determining specific cutting energy of granite", J. Manufact. Sci. Eng.-Transact. ASME, 143(11). https://doi.org/10.1115/1.4050926.
  25. Kim, H.E., Nam, K.M., Rehman, H., Kyeon, T.S. and Yoo, H.K. (2022), "Comparison study on coarseness index and maximum diameter of rock fragments by linear cutting tests", Appl. Sci.- Basel, 12(17). https://doi.org/10.3390/app12178793.
  26. Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
  27. Labra, C., Rojek, J. and Onate, E. (2017), "Discrete/finite element modelling of rock cutting with a TBM disc cutter", Rock Mech. Rock Eng., 50(3), 621-638. https://doi.org/10.1007/s00603-016-1133-7.
  28. Li, J., Liu, Y., Wang, L., Sun, Y., Li, X. and Wang, J. (2024), "Research on the penetration coefficient during the rock drilling process by cyclic impact", Rock Mech. Rock Eng., 57, 2175-2193. https://doi.org/10.1007/s00603-023-03631-6.
  29. Li, X., Wang, S., Ge, S., Malekian, R. and Li, Z. (2018), "A theoretical model for estimating the peak cutting force of conical picks", Exp. Mech., 58(5), 709-720. https://doi.org/10.1007/s11340-0170372-1.
  30. Liu, Q., Pan, Y., Liu, J., Kong, X. and Shi, K. (2016), "Comparison and discussion on fragmentation behavior of soft rock in multi-indentation tests by a single TBM disc cutter", Tunn. Undergr. Sp. Tech., 57, 151-161. https://doi.org/10.1016/j.tust.2016.02.021.
  31. Miller, M.H. and Sikarskie, D.L. (1968), "On the penetration of rock by three-dimensional indentors", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 5(5), 375-398. https://doi.org/10.1016/01489062(68)90043-0.
  32. Moon, T. and Oh, J. (2012), "A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method", Rock Mech. Rock Eng., 45(5), 837-849. https://doi.org/10.1007/s00603-0110180-3.
  33. Morris, R.I. (1969), Rock drillability related to a roller cone bit, 79-83.
  34. Nishimatsu, Y. (1972), "The mechanics of rock cutting", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 9(2), 261-270. https://doi.org/10.1016/0148-9062(72)90027-7.
  35. Pan, Y.C., Liu, Q.S., Liu, J.P., Liu, Q. and Kong, X.X. (2018), "Full-scale linear cutting tests in Chongqing Sandstone to study the influence of confining stress on rock cutting efficiency by TBM disc cutter", Tunn. Undergr. Sp. Tech., 80, 197-210. https://doi.org/10.1016/j.tust.2018.06.013.
  36. Pan, Y.C., Liu, Q.S., Peng, X.X., Kong, X.X., Liu, J.P. and Zhang, X.B. (2018), "Full-scale rotary cutting test to study the influence of disc cutter installment radius on rock cutting forces", Rock Mech. Rock Eng., 51(7), 2223-2236. https://doi.org/10.1007/s00603-018-1460-y.
  37. Pang, S.S., Goldsmith, W. and Hood, M. (1989), "A force-indentation model for brittle rocks", Rock Mech. Rock Eng., 22(2), 127-148. https://doi.org/10.1007/BF01583958.
  38. Paul, B. and Sikarskie, D.L. (1965), "A preliminary theory of static penetration by a rigid wedge into a brittle material", Trans. Soc. Min. Eng. AIME, 372-382.
  39. Poole, R.W. and Farmer, I.W. (1980), "Consistency and repeatability of Schmidt Hammer rebound data during field testing", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 17(3), 167-171. https://doi.org/10.1016/0148-9062(80)91363-7.
  40. Ranman, K.E. (1985), "A model describing rock cutting with conical picks", Rock Mech. Rock Eng., 18(2), 131-140. https://doi.org/10.1007/BF01019602.
  41. Rojek, J., Onate, E., Labra, C. and Kargl, H. (2011), "Discrete element simulation of rock cutting", Int. J. Rock Mech. Min. Sci., 48(6), 996-1010. https://doi.org/10.1016/j.ijrmms.2011.06.003.
  42. Roxborough, F.F. and Liu, Z.C. (1995), "Theoretical considerations on pick shape in rock and coal cutting", Underground Operators' Conference, 95(7), 189-193.
  43. Shaterpour-Mamaghani, A., Copur, H., Balci, C., Tumac, D., Kocbay, A., Dogan, E., Altintas, E., Erdogan, T., Sirin, O. and Gumus, A. (2023), "Suggestion of new models for predicting performance of raise boring machines based on indentation tests", Tunn. Undergr. Sp. Tech., 138, 105181. https://doi.org/10.1016/j.tust.2023.105181.
  44. She, L., Li, Y., Wang, C., Zhang, Z., He, S., Liu, W., Du, M. and Li, S. (2024), "Prediction of TBM disc cutter wear based on field parameters regression analysis", Geomech. Eng., 35(6), 647-663, https://doi.org/10.12989/gae.2023.35.6.647.
  45. Stopka, G. (2021), "Modelling of rock cutting with asymmetrical disc tool using Discrete-Element Method (DEM)", Rock Mech. Rock Eng., 54(12), 6265-6279. https://doi.org/10.1007/s00603-021-02611-y.
  46. Su, O. and Akcin, N.A. (2011), "Numerical simulation of rock cutting using the discrete element method", Int. J. Rock Mech. Min. Sci., 48(3), 434-442. https://doi.org/10.1016/j.ijrmms.2010.08.012.
  47. Su, O. and Wang, X. (2019), "Proposal of some cuttability indexes for evaluating the performance of mechanical excavators using conical picks", Proceedings of the Rapid Excavation and Tunneling Conference, Chicago, USA, Society for Mining, Metallurgy and Exploration.
  48. Ulusay, R. (2016), The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer International Publishing.
  49. Wang, X., Liang, Y.P., Wang, Q.F. and Zhang, Z.Y. (2017), "Empirical models for tool forces prediction of drag-typed picks based on principal component regression and ridge regression methods", Tunn. Undergr. Sp. Tech., 62, 75-95. https://doi.org/10.1016/j.tust.2016.11.006.
  50. Wang, X. and Su, O. (2019), "Specific energy analysis of rock cutting based on fracture mechanics: A case study using a conical pick on sandstone", Eng. Fract. Mech., 213, 197-205. https://doi.org/10.1016/j.engfracmech.2019.04.010.
  51. Xie, W.Q., Zhang, X.P., Liu, Q.S., Tang, S.H. and Li, W.W. (2021), "Experimental investigation of rock strength using indentation test and point load test", Int. J. Rock Mech. Min. Sci., 139, 104647. https://doi.org/10.1016/j.ijrmms.2021.104647.
  52. Xu, H.G., Geng, Q., Sun, Z.C. and Qi, Z.C. (2021), "Full-scale granite cutting experiments using tunnel boring machine disc cutters at different free-face conditions", Tunn. Undergr. Sp. Tech., 108. https://doi.org/10.1016/j.tust.2020.103719.
  53. Yasar, S. (2018), "Simple rock cutting testing", Rock Dynamics - Experiments, Theories and Applications: 657-661.
  54. Yasar, S. (2020), "A general semi-theoretical model for conical picks", Rock Mech. Rock Eng., 53(6), 2557-2579. https://doi.org/10.1007/s00603-020-02078-3.
  55. Yin, L.J., Gong, Q.M., Ma, H.S., Zhao, J. and Zhao, X.B. (2014), "Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter", Int. J. Rock Mech. Min. Sci., 72, 261-276. https://doi.org/10.1016/j.ijrmms.2014.07.022.
  56. Zhang, X.P., Xie, W.Q., Liu, Q.S., Yang, X.M., Tang, S.H. and Wu, J. (2021), "Development and application of an in-situ indentation testing system for the prediction of tunnel boring machine performance", Int. J. Rock Mech. Min. Sci., 147, 104899. https://doi.org/10.1016/j.ijrmms.2021.104899.
  57. Zhang, X.P., Yang, X.M., Xie, W.Q., Liu, Q.S. and Tang, S.H. (2023), "Comparison and selection of index for macro-indentation test of brittle rock", Rock Mech. Rock Eng., 56, 6375-6394. https://doi.org/10.1007/s00603-023-03373-5.