과제정보
This research was supported by the National Natural Science Foundation of China (Grant No. 52078104).
참고문헌
- ASCE MOP 74-2020 (2020), Guidelines for electrical transmission line structural loading, American Society of Civil Engineers; Reston, VA, USA.
- Alduse, B.P., Jung, S. and Vanli, O.A. (2015), "Condition-based updating of the fragility for roof covers under high winds", J. Build. Eng., 2, 36-43. https://doi.org/10.1016/j.jobe.2015.04.003.
- Bezabeh, M.A., Bitsuamlak, G.T., Popovski, M. and Tesfamariam, S. (2018), "Probabilistic serviceability-performance assessment of tall mass-timber buildings subjected to stochastic wind loads: Part II - structural reliability analysis", J. Wind. Eng. Ind. Aerod., 181, 112-125. https://doi.org/10.1016/j.jweia.2018.08.013.
- Biondini, F. and Frangopol, D.M. (2016), "Life-cycle performance of deteriorating structural systems under uncertainty: Review", J. Struct. Eng., 142(9), F4016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544.
- BSEN50341 (2012), Overhead electrical lines exceeding AC 1 kV-Part 1: General requirements-Common specifications, UK Technical Committee; Brussels, Belgium.
- Dagher, H.J., Kulendran, S., Peyrot, A.H., Maamouri, M. and Lu, Q. (1993), "System reliability concepts in design of transmission lines", J. Struct. Eng., 119(1), 323-340. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(323).
- Dagher, H.J., Lu, Q. and Peyrot, A.H. (1998), "Reliability of transmission structures including nonlinear effects", J. Struct. Eng., 124(8), 966-973. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(966).
- Deng, H.Z., Xu, H.J., Duan, C.Y., Jin, X.H. and Wang, Z.H. (2016), "Experimental and numerical study on the responses of a transmission tower to skew incident winds", J. Wind. Eng. Ind. Aerod., 157, 171-188. https://doi.org/10.1016/j.jweia.2016.05.010.
- DL/T 5551-2018 (2018), Load code for the design of overhead transmission line, China Planning Press; Beijing, China.
- Dolsek, M. (2009), "Incremental dynamic analysis with consideration of modeling uncertainties", Earthq. Eng. Struct. Dyna., 38, 805-825. https://doi.org/10.1002/eqe.869.
- Du, W.L., Fu, X., Li, G. and Li, H.N. (2024), "An efficient nonlinear method for cascading failure analysis and reliability assessment of power distribution lines under wind hazard", Reliab. Eng. Syst. Safe., 245, 109995. https://doi.org/10.1016/j.ress.2024.109995.
- Du, W.L., Fu, X., Li, H.N., Li, G. and Liu, C.G. (2023), "Time-frequency buffeting responses of transmission lines excited by two-dimensional turbulent wind: Closed-form solution", J. Eng. Mech., 149(12), 04023101. https://doi.org/10.1061/JENMDT.EMENG-7174.
- Fathali, M.A. and Vaez, S.R.H. (2023), "Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types", Steel Comp. Struct., 46(5), 673-687. https://doi.org/10.12989/scs.2023.46.5.673.
- Fenton, G.A. and Sutherland, N. (2011), "Reliability-based transmission line design", IEEE T. Power Deliver., 26(2), 596-606. https://doi.org/10.1109/TPWRD.2009.2036625.
- Fu, X., Du, W.L., Li, H.N., Li, G. and Gan, S. (2023), "Wind-induced response and equivalent static wind load of transmission lines considering the location updating effect", IEEE T. Power Deliver., 38(4), 2692-2702. https://doi.org/10.1109/TPWRD.2023.3254814.
- Fu, X. and Li, H.-N. (2018), "Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load", J. Wind. Eng. Ind. Aerod., 173, 147-155. https://doi.org/10.1016/j.jweia.2017.12.009.
- Gayathri, B. and Ramalingam, R. (2018), "Joint stress based deflection limits for transmission line towers", Steel Comp. Struct., 26(1), 45-53. https://doi.org/10.12989/scs.2018.26.1.045.
- Gomes, L. and Vickery, B.J. (1977), "On the prediction of extreme wind speeds from the parent distribution", J. Wind. Eng. Ind. Aerod., 2(1), 21-36. https://doi.org/10.1016/0167-6105(77)90003-4.
- Gomes, L. and Vickery, B.J. (1978), "Extreme wind speeds in mixed wind climates", J. Wind. Eng. Ind. Aerod., 2(4), 331-344. https://doi.org/10.1016/0167-6105(78)90018-1.
- Hamada, A. and El Damatty, A. (2011), "Behaviour of guyed transmission line structures under tornado wind loading", Comput. Struct., 89(11), 986-1003. https://doi.org/10.1016/j.compstruc.2011.01.015.
- Holmes, J.D. (2007), Wind Loading of Structures, Spon Press, London.
- IEC60826 (2017), Design criteria of overhead transmission lines, International Electrotechnical Commission; Bern, Switzerland.
- JCSS (2001), Probabilistic model code--part 3-Material properties, Joint Committee on Structural Safety.
- Kaminski, J., Riera, J.D., Menezes, R.C.R.D. and Miguel, L.F.F. (2008), "Model uncertainty in the assessment of transmission line towers subjected to cable rupture", Eng. Struct., 30, 2935-2944. https://doi.org/10.1016/j.engstruct.2008.03.011.
- Khan, M.A., Siddiqui, N.A. and Abbas, H. (2004), "Reliability analysis of latticed steel towers against wind induced displacement", Steel Compos. Struct., 4(1), 9-21. https://doi.org/10.12989/scs.2004.4.1.009.
- Kudzys, A. (2006), "Safety of power transmission line structures under wind and ice storms", Eng. Struct., 28, 682-689. https://doi.org/10.1016/j.engstruct.2005.09.026.
- Li, J.X., Cheng, J.P., Zhang, C., Qu, C.X., Zhang X.H. and Jiang W.Q. (2023), "Seismic response study of a steel lattice transmission tower considering the hysteresis characteristics of bolt joint slippage", Eng. Struct., 281, 115754. https://doi.org/10.1016/j.engstruct.2023.115754.
- Li, M.H. (2012), "Analysis on reliability of 1000kV UHV AC transmission tower", Ph.D. Dissertation; Chongqing University, Chongqing.
- Manis, P. and Bloodworth, A.G. (2016), "Climate change and extreme wind effects on transmission towers", Struct. Build., 170(SB2), 81-97. https://doi.org/10.1680/jstbu.16.00013.
- Mara, T.G. and Hong, H.P. (2013), "Effect of wind direction on the response and capacity surface of a transmission tower", Eng. Struct., 57, 493-501. https://doi.org/10.1016/j.engstruct.2013.10.004.
- Mara, T.G., Hong, H.P., Lee, C.S. and Ho, T.C.E. (2016), "Capacity of a transmission tower under downburst wind loading", Wind Struct., 22(1), 65-87. https://doi.org/10.12989/was.2016.22.1.065.
- Minciarelli, F., Gioffre, M., Grigoriu, M. and Simiu, E. (2001), "Estimates of extreme wind effects and wind load factors: influence of knowledge uncertainties", Probabilist. Eng. Mech., 16(6), 331-340. https://doi.org/10.1016/S0266-8920(01)00024-8.
- Nelsen, B. (2006), An Introduction to Copulas, Springer, New York, USA.
- Nguyen, H.D., Shin, M. and Torbol, M. (2020), "Reliability assessment of a planar steel frame subjected to earthquakes in case of an implicit limit - state function", J Build. Eng., 32, 101782. https://doi.org/10.1016/j.jobe.2020.101782.
- Rezaei, S.N., Chouinard, L., Langlois, S. and Legeron, F. (2017), "A probabilistic framework based on statistical learning theory for structural reliability analysis of transmission line systems", Struct. Infrastruct. Eng., 13(12), 1538-1552. https://doi.org/10.1080/15732479.2017.1299771.
- Salman, A.M., Li, Y. and Stewart, M.G. (2015), "Evaluating system reliability and targeted hardening strategies of power distribution system ssubjected to hurricanes", Reliab. Eng. Syst. Safe., 144, 319-333. https://doi.org/10.1016/j.ress.2015.07.028.
- Scherb, A., Garre, L. and Straub, D. (2019), "Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid", Reliab. Eng. Syst. Safe., 191, 106517. https://doi.org/10.1016/j.ress.2019.106517.
- Taherinasab, M. and Aghakouchak, A.A. (2021), "Estimating failure probability of IBBC connection using direct coupling of reliability approach and finite element method", J Build. Eng., 38, 02207. https://doi.org/10.1016/j.jobe.2021.102207.
- Thomos, G.C. and Trezos, C.G. (2006), "Examination of the probabilistic response of reinforced concrete structures under static non-linear analysis", Eng. Struct., 28, 120-133. https://doi.org/10.1016/j.engstruct.2005.08.003.
- Veletsos, A.S. and Darbre, G.R. (1983), "Dynamic stiffness of parabolic cables", Earthq Eng Struct D., 11, 367-401. https://doi.org/10.1002/eqe.4290110306.
- Wang, J.T., Wu, X.H., Yang, B. and Sun, Q. (2021), "Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment", Steel Comp. Struct., 41(5), 681-695. https://doi.org/10.12989/scs.2021.41.5.681.
- Xiao, Z.Z., Liu, H.L., Li, Z.L., Yu, D.K. and Li, Y.G. (2016), "Research on wind-induced reliability of double column suspended guyed tower in strong wind area", Int. J. Struct. Stab. Dyn., 16(1), 1640011. https://doi.org/10.1142/S0219455416400113.
- Yang, S.C., Liu, T.J. and Hong, H.P. (2017), "Reliability of tower and tower-line systems under spatiotemporally varying wind or earthquake loads", J. Struct. Eng., 143(10), 04017137. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001835.
- Yu, D.H. and Li, G. (2024), "A novel Woodbury solution method for nonlinear seismic response analysis of large-scale structures", Earthq. Eng. Struct. Dyn., 53(1), 261-278. https://doi.org/10.1002/eqe.4018.
- Yu, X., Lu, D. and Li, B. (2016), "Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis", Earthq. Struct., 10(1), 141-161. https://doi.org/10.12989/eas.2016.10.1.141.