DOI QR코드

DOI QR Code

A data-driven method for the reliability analysis of a transmission line under wind loads

  • Xing Fu (Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering) ;
  • Wen-Long Du (Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering) ;
  • Gang Li (Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering) ;
  • Zhi-Qian Dong (Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering) ;
  • Hong-Nan Li (Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering)
  • Received : 2021.09.12
  • Accepted : 2024.06.18
  • Published : 2024.08.25

Abstract

This study focuses on the reliability of a transmission line under wind excitation and evaluates the failure probability using explicit data resources. The data-driven framework for calculating the failure probability of a transmission line subjected to wind loading is presented, and a probabilistic method for estimating the yearly extreme wind speeds in each wind direction is provided to compensate for the incompleteness of meteorological data. Meteorological data from the Xuwen National Weather Station are used to analyze the distribution characteristics of wind speed and wind direction, fitted with the generalized extreme value distribution. Then, the most vulnerable tower is identified to obtain the fragility curves in all wind directions based on uncertainty analysis. Finally, the failure probabilities are calculated based on the presented method. The simulation results reveal that the failure probability of the employed tower increases over time and that the joint probability distribution of the wind speed and wind direction must be considered to avoid overestimating the failure probability. Additionally, the mixed wind climates (synoptic wind and typhoon) have great influence on the estimation of structural failure probability and should be considered.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant No. 52078104).

References

  1. ASCE MOP 74-2020 (2020), Guidelines for electrical transmission line structural loading, American Society of Civil Engineers; Reston, VA, USA.
  2. Alduse, B.P., Jung, S. and Vanli, O.A. (2015), "Condition-based updating of the fragility for roof covers under high winds", J. Build. Eng., 2, 36-43. https://doi.org/10.1016/j.jobe.2015.04.003.
  3. Bezabeh, M.A., Bitsuamlak, G.T., Popovski, M. and Tesfamariam, S. (2018), "Probabilistic serviceability-performance assessment of tall mass-timber buildings subjected to stochastic wind loads: Part II - structural reliability analysis", J. Wind. Eng. Ind. Aerod., 181, 112-125. https://doi.org/10.1016/j.jweia.2018.08.013.
  4. Biondini, F. and Frangopol, D.M. (2016), "Life-cycle performance of deteriorating structural systems under uncertainty: Review", J. Struct. Eng., 142(9), F4016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544.
  5. BSEN50341 (2012), Overhead electrical lines exceeding AC 1 kV-Part 1: General requirements-Common specifications, UK Technical Committee; Brussels, Belgium.
  6. Dagher, H.J., Kulendran, S., Peyrot, A.H., Maamouri, M. and Lu, Q. (1993), "System reliability concepts in design of transmission lines", J. Struct. Eng., 119(1), 323-340. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(323).
  7. Dagher, H.J., Lu, Q. and Peyrot, A.H. (1998), "Reliability of transmission structures including nonlinear effects", J. Struct. Eng., 124(8), 966-973. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(966).
  8. Deng, H.Z., Xu, H.J., Duan, C.Y., Jin, X.H. and Wang, Z.H. (2016), "Experimental and numerical study on the responses of a transmission tower to skew incident winds", J. Wind. Eng. Ind. Aerod., 157, 171-188. https://doi.org/10.1016/j.jweia.2016.05.010.
  9. DL/T 5551-2018 (2018), Load code for the design of overhead transmission line, China Planning Press; Beijing, China.
  10. Dolsek, M. (2009), "Incremental dynamic analysis with consideration of modeling uncertainties", Earthq. Eng. Struct. Dyna., 38, 805-825. https://doi.org/10.1002/eqe.869.
  11. Du, W.L., Fu, X., Li, G. and Li, H.N. (2024), "An efficient nonlinear method for cascading failure analysis and reliability assessment of power distribution lines under wind hazard", Reliab. Eng. Syst. Safe., 245, 109995. https://doi.org/10.1016/j.ress.2024.109995.
  12. Du, W.L., Fu, X., Li, H.N., Li, G. and Liu, C.G. (2023), "Time-frequency buffeting responses of transmission lines excited by two-dimensional turbulent wind: Closed-form solution", J. Eng. Mech., 149(12), 04023101. https://doi.org/10.1061/JENMDT.EMENG-7174.
  13. Fathali, M.A. and Vaez, S.R.H. (2023), "Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types", Steel Comp. Struct., 46(5), 673-687. https://doi.org/10.12989/scs.2023.46.5.673.
  14. Fenton, G.A. and Sutherland, N. (2011), "Reliability-based transmission line design", IEEE T. Power Deliver., 26(2), 596-606. https://doi.org/10.1109/TPWRD.2009.2036625.
  15. Fu, X., Du, W.L., Li, H.N., Li, G. and Gan, S. (2023), "Wind-induced response and equivalent static wind load of transmission lines considering the location updating effect", IEEE T. Power Deliver., 38(4), 2692-2702. https://doi.org/10.1109/TPWRD.2023.3254814.
  16. Fu, X. and Li, H.-N. (2018), "Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load", J. Wind. Eng. Ind. Aerod., 173, 147-155. https://doi.org/10.1016/j.jweia.2017.12.009.
  17. Gayathri, B. and Ramalingam, R. (2018), "Joint stress based deflection limits for transmission line towers", Steel Comp. Struct., 26(1), 45-53. https://doi.org/10.12989/scs.2018.26.1.045.
  18. Gomes, L. and Vickery, B.J. (1977), "On the prediction of extreme wind speeds from the parent distribution", J. Wind. Eng. Ind. Aerod., 2(1), 21-36. https://doi.org/10.1016/0167-6105(77)90003-4.
  19. Gomes, L. and Vickery, B.J. (1978), "Extreme wind speeds in mixed wind climates", J. Wind. Eng. Ind. Aerod., 2(4), 331-344. https://doi.org/10.1016/0167-6105(78)90018-1.
  20. Hamada, A. and El Damatty, A. (2011), "Behaviour of guyed transmission line structures under tornado wind loading", Comput. Struct., 89(11), 986-1003. https://doi.org/10.1016/j.compstruc.2011.01.015.
  21. Holmes, J.D. (2007), Wind Loading of Structures, Spon Press, London.
  22. IEC60826 (2017), Design criteria of overhead transmission lines, International Electrotechnical Commission; Bern, Switzerland.
  23. JCSS (2001), Probabilistic model code--part 3-Material properties, Joint Committee on Structural Safety.
  24. Kaminski, J., Riera, J.D., Menezes, R.C.R.D. and Miguel, L.F.F. (2008), "Model uncertainty in the assessment of transmission line towers subjected to cable rupture", Eng. Struct., 30, 2935-2944. https://doi.org/10.1016/j.engstruct.2008.03.011.
  25. Khan, M.A., Siddiqui, N.A. and Abbas, H. (2004), "Reliability analysis of latticed steel towers against wind induced displacement", Steel Compos. Struct., 4(1), 9-21. https://doi.org/10.12989/scs.2004.4.1.009.
  26. Kudzys, A. (2006), "Safety of power transmission line structures under wind and ice storms", Eng. Struct., 28, 682-689. https://doi.org/10.1016/j.engstruct.2005.09.026.
  27. Li, J.X., Cheng, J.P., Zhang, C., Qu, C.X., Zhang X.H. and Jiang W.Q. (2023), "Seismic response study of a steel lattice transmission tower considering the hysteresis characteristics of bolt joint slippage", Eng. Struct., 281, 115754. https://doi.org/10.1016/j.engstruct.2023.115754.
  28. Li, M.H. (2012), "Analysis on reliability of 1000kV UHV AC transmission tower", Ph.D. Dissertation; Chongqing University, Chongqing.
  29. Manis, P. and Bloodworth, A.G. (2016), "Climate change and extreme wind effects on transmission towers", Struct. Build., 170(SB2), 81-97. https://doi.org/10.1680/jstbu.16.00013.
  30. Mara, T.G. and Hong, H.P. (2013), "Effect of wind direction on the response and capacity surface of a transmission tower", Eng. Struct., 57, 493-501. https://doi.org/10.1016/j.engstruct.2013.10.004.
  31. Mara, T.G., Hong, H.P., Lee, C.S. and Ho, T.C.E. (2016), "Capacity of a transmission tower under downburst wind loading", Wind Struct., 22(1), 65-87. https://doi.org/10.12989/was.2016.22.1.065.
  32. Minciarelli, F., Gioffre, M., Grigoriu, M. and Simiu, E. (2001), "Estimates of extreme wind effects and wind load factors: influence of knowledge uncertainties", Probabilist. Eng. Mech., 16(6), 331-340. https://doi.org/10.1016/S0266-8920(01)00024-8.
  33. Nelsen, B. (2006), An Introduction to Copulas, Springer, New York, USA.
  34. Nguyen, H.D., Shin, M. and Torbol, M. (2020), "Reliability assessment of a planar steel frame subjected to earthquakes in case of an implicit limit - state function", J Build. Eng., 32, 101782. https://doi.org/10.1016/j.jobe.2020.101782.
  35. Rezaei, S.N., Chouinard, L., Langlois, S. and Legeron, F. (2017), "A probabilistic framework based on statistical learning theory for structural reliability analysis of transmission line systems", Struct. Infrastruct. Eng., 13(12), 1538-1552. https://doi.org/10.1080/15732479.2017.1299771.
  36. Salman, A.M., Li, Y. and Stewart, M.G. (2015), "Evaluating system reliability and targeted hardening strategies of power distribution system ssubjected to hurricanes", Reliab. Eng. Syst. Safe., 144, 319-333. https://doi.org/10.1016/j.ress.2015.07.028.
  37. Scherb, A., Garre, L. and Straub, D. (2019), "Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid", Reliab. Eng. Syst. Safe., 191, 106517. https://doi.org/10.1016/j.ress.2019.106517.
  38. Taherinasab, M. and Aghakouchak, A.A. (2021), "Estimating failure probability of IBBC connection using direct coupling of reliability approach and finite element method", J Build. Eng., 38, 02207. https://doi.org/10.1016/j.jobe.2021.102207.
  39. Thomos, G.C. and Trezos, C.G. (2006), "Examination of the probabilistic response of reinforced concrete structures under static non-linear analysis", Eng. Struct., 28, 120-133. https://doi.org/10.1016/j.engstruct.2005.08.003.
  40. Veletsos, A.S. and Darbre, G.R. (1983), "Dynamic stiffness of parabolic cables", Earthq Eng Struct D., 11, 367-401. https://doi.org/10.1002/eqe.4290110306.
  41. Wang, J.T., Wu, X.H., Yang, B. and Sun, Q. (2021), "Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment", Steel Comp. Struct., 41(5), 681-695. https://doi.org/10.12989/scs.2021.41.5.681.
  42. Xiao, Z.Z., Liu, H.L., Li, Z.L., Yu, D.K. and Li, Y.G. (2016), "Research on wind-induced reliability of double column suspended guyed tower in strong wind area", Int. J. Struct. Stab. Dyn., 16(1), 1640011. https://doi.org/10.1142/S0219455416400113.
  43. Yang, S.C., Liu, T.J. and Hong, H.P. (2017), "Reliability of tower and tower-line systems under spatiotemporally varying wind or earthquake loads", J. Struct. Eng., 143(10), 04017137. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001835.
  44. Yu, D.H. and Li, G. (2024), "A novel Woodbury solution method for nonlinear seismic response analysis of large-scale structures", Earthq. Eng. Struct. Dyn., 53(1), 261-278. https://doi.org/10.1002/eqe.4018.
  45. Yu, X., Lu, D. and Li, B. (2016), "Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis", Earthq. Struct., 10(1), 141-161. https://doi.org/10.12989/eas.2016.10.1.141.