DOI QR코드

DOI QR Code

Experimental study on hollow GFRP-confined reinforced concrete columns under eccentric loading

  • B.L. Chen (College of Resources and Civil Engineering, Northeastern University) ;
  • H.Y. Gao (College of Resources and Civil Engineering, Northeastern University) ;
  • L.G. Wang (College of Resources and Civil Engineering, Northeastern University)
  • Received : 2021.01.29
  • Accepted : 2024.08.04
  • Published : 2024.08.25

Abstract

Hollow reinforced concrete columns confined with GFRP tubes (GRCH) are composite members composed of the outer GFRP tube, the PVC or other plastic tube as the inner tube, and the reinforced concrete between two tubes. Because of their high ductility, light weight, corrosion resistance and convenient construction, many researchers pay attention to the composite members. However, there are few studies on GRCH members under eccentric compression compared with those under axial compression. Eight hollow columns were tested under eccentric compression, including one axial compression column and seven eccentric compression columns. The failure modes and force mechanisms of GRCH members were analyzed, considering the varying in hollow ratio, reinforcement ratio and eccentricity. The test results showed that configuring steel bars can greatly increase the bearing capacity and ductility of the members. Each component (GFRP tube, concrete, steel bar) had good deformation coordination and the strength of each material could be fully utilized. But for specimens with larger eccentricity ratio (er=0.4) and larger hollow ratio (χ=0.55), the restraining effect of GFRP tube on concrete was significantly decreased.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China Youth Fund (51808100), the Natural Science Foundation of Liaoning Province (20170540303), and the Natural Fund Guidance plan of Liaoning Province (2019-ZD_0004).

References

  1. AlAjarmeh, O.S., Manalo, A.C., Benmokrane, B., Karunasena, K., Ferdous, W. and Mendis, P. (2020), "Hollow concrete columns: Review of structural behavior and new designs using GFRP reinforcement", Eng. Struct., 203, 1-16. https://doi.org/10.1016/j.engstruct.2019.109829.
  2. Alsaadi, A.U., Aravinthan, T. and Lokuge, W. (2018), "Structural applications of fibre reinforced polymer (FRP) composite tubes: a review of columns members", Compos. Struct., 204, 513-524. https://doi.org/10.1016/j.compstruct.2018.07.109.
  3. Cassese, P., Ricci, P. and Verderame, G.M. (2017), "Experimental study on the seismic performance of existing reinforced concrete bridge piers with hollow rectangular section", Eng. Struct., 144, 88-106. https://doi.org/10.1016/j.engstruct.2017.04.047.
  4. Chen, B.L. and Wang, L.G. (2019), "Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression", Steel Compos. Struct., 32(1), 59-66. https://doi.org/10.12989/scs.2019.32.1.059.
  5. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023.
  6. Fahmy, M.F. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. Part B-Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001.
  7. Fam, A. and Rizkalla, S.H. (2001), "Behavior of Axially Loaded Concrete-Filled Circular Fiber-Reinforced Polymer Tubes", ACI Struct. J. 98, 280-289. https://doi.org/10.14359/10217.
  8. Feng, B., Zhu, Y.H., Xie, F., Chen, J. and Liu, C.B. (2021), "Experimental investigation and design of hollow section, centrifugal concrete-filled GFRP tube columns", Build., 11(12), 598. https://doi.org/10.3390/buildings11120598.
  9. Gao, H.Y., Wang, L.G. and Zhang, N. (2021), "Experimental Study on FRP - Reinforced Concrete -Steel Double-Skin Tubular Columns under Eccentric Compression Loads", J. Compos. Construct., 25(6), 04021051. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001165.
  10. Gao, H., Wang, L., Chen, B. and Yan, M. (2023), "Axial compressive behavior of GFRP tube-reinforced concrete-steel double skin tubular columns", J. Build. Eng., 75, 106973. https://doi.org/10.1016/j.jobe.2023.106973.
  11. Hadi, M.N.S., Jameel, M.T. and Sheikh, M.N. (2017), "Behavior of Circularized Hollow RC Columns under Different Loading Conditions", J. Compos. Construct., 21(5), 04017025. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000808.
  12. Jamatia, R. and Deb, A. (2020), "FRP confined hollow concrete columns under axial compression: A comparative assessment", Compos. Struct., 236, 111857. https://doi.org/10.1016/j.compstruct.2020.111857.
  13. Kusumawardaningsih, Y. and Hadi, M.N.S. (2010), "Comparative behaviour of hollow columns confined with FRP composites", Compos. Struct., 93(1), 198-205. https://doi.org/10.1016/j.compstruct.2010.05.020.
  14. Lee, J., Choi, J., Hwang, D. and Kwahk, I. (2015), "Seismic performance of circular hollow RC bridge columns", KSCE J. Civil Eng., 19(5), 1456-1467. https://doi.org/10.1007/s12205-014-1173-z.
  15. Liang, X. and Sritharan, S. (2018), "Effects of Confinement in Circular Hollow Concrete Columns", J. Struct. Eng., 144(9), 04018159. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002151.
  16. Lignola, G.P., Prota, A., Manfredi, G. and Cosenza, E. (2007), "Experimental performance of RC hollow columns confined with CFRP", J. Compos. Construct., 11(1), 42-49. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:1(42).
  17. Lignola, G.P., Prota, A., Manfredi, G. and Cosenza, E. (2009), "Non-linear modeling of RC rectangular hollow piers confined with CFRP", Compos. Struct., 88(1), 56-64. https://doi.org/10.1016/j.compstruct.2008.10.001.
  18. Lignola, G.P., Nardone, F., Prota, A., De Luca, A. and Nanni, A. (2011), "Analysis of RC hollow columns strengthened with GFRP", J. Compos. Construct., 15(4), 545-556. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000192.
  19. Lingnola, G.P., Nardone, F., Prota, A. and Manfredi, G. (2012), "Analytical model for the effective strain in FRP-wrapped circular RC columns", Compos. Part B: Eng., 43(8), 3208-3218. https://doi.org/10.1016/j.compositesb.2012.04.007.
  20. Micelli, F. and Modarelli, R. (2013), "Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete", Compos. Part B-Eng., 45(1), 1420-1431. https://doi.org/10.1016/j.compositesb.2012.09.055.
  21. Ozbakkaloglu, T. and Fanggi, B.A.L. (2015), "FRP-HSC-steel composite columns: behavior under monotonic and cyclic axial compression", Mater. Struct., 48, 1075-1093. https://doi.org/10.1617/s11527-013-0216-0.
  22. Pavese, A., Bolognini, D. and Peloso, S. (2004), "FRP seismic retrofit of RC square hollow section bridge piers", J. Earthq. Eng., 8(1), 225-250. https://doi.org/10.1142/S1363246904001614.
  23. Realfonzo, R. and Napoli, A. (2011), "Concrete confined by FRP systems: Confinement efficiency and design strength models", Compos. Part B-Eng., 42(4), 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028.
  24. Setvati, M.R. and Mustaffa, Z. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP patch", Steel Compos. Struct., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151.
  25. Su, R., Li, X. and Li, Z.W. (2023), "Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns", Steel Compos. Struct., 47(6), 781-794. https://doi.org/10.12989/scs.2023.47.6.781.
  26. Wang, J., Liu, W., Zhou, D., Zhu, L. and Fang, H. (2014), "Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression", Steel Compos. Struct., 17(4), 431-452. https://doi.org/10.12989/scs.2014.17.4.431.
  27. Wu, G., Lu, Z.T. and Wu, Z.S. (2006), "Strength and ductility of concrete cylinders confined with FRP composites", Construct. Build. Mater., 20(3), 134-148. https://doi.org/10.1016/j.conbuildmat.2005.01.022.
  28. Xiao, Y. (2001), "Applications of FRP Composites in Concrete Columns", Adv. Struct. Eng., 7(4), 335-343. https://doi.org/10.1260/1369433041653552.
  29. Xiong, M.X., Chen, G., Long, Y.L., Cui, H. and Liu, Y. (2022), "Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model", Steel Compos. Struct., 43(2), 257-270. https://doi.org/10.12989/scs.2022.43.2.257.
  30. Yang, Y., Xue, Y., Yu, Y., Liu, R. and Ke, S. (2017), "Study of the design and mechanical performance of a GFRP-concrete composite deck", Steel Compos. Struct., 24(6), 679-688. https://doi.org/10.12989/scs.2017.24.6.679.
  31. Yeh, Y.K., Mo, Y.L. and Yang, C.Y. (2002), "Seismic performance of rectangular hollow bridge columns", J. Struct. Eng., 128(1), 60-68. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(60).
  32. Zhang, L., Liu, W., Wang, L. and Ling, Z. (2020), "On-axis and off-axis compressive behavior of pultruded GFRP composites at elevated temperatures", Compos. Struct., 236(15), 111891. https://doi.org/10.1016/j.compstruct.2020.111891.
  33. Zinno, A., Lignola, G.P., Prota, A., Manfredi, G. and Cosenza, E. (2010), "Influence of free edge stress concentration on effectiveness of FRP confinement", Compos. Part B: Eng., 41(7), 523-532. https://doi.org/10.1016/j.compositesb.2010.07.003.