Acknowledgement
이 논문은 정부(원자력안전위원회)의 재원으로 사용후 핵연료관리핵심기술개발사업단 및 원자력안전재단의 지원을 받아 수행된 연구사업이며(No.1075001193), 2024년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 연구되었습니다(NRF-202400341207). 이 외에도 한국수자원공사 및 한국지질자원연구원의 자료제공으로 연구를 수행할 수 있었으며, 이들 기관의 귀중한 도움과 협조에 진심으로 감사드립니다.
References
- Achtziger-Zupancic, P., Loew, S. and Mariethoz, G. (2017) A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. Journal of Geophysical Research: Solid Earth, v.122(5), p.3513-3539. doi: 10.1002/2017JB014106
- ANDRA. (2005) Phenomenological evolution of a geological repository
- ANDRA[Website]. (2024. Jul 22) https://international.andra.fr/projects/cigeo/protection-most-hazardous-radioactive-waste/geological-disposal-protection
- Bear. (1972) Dynamics of Fluids in Porous Media. Courier Corporation.
- BGE. (2020) Sub-areas Interim Report pursuant to Section 13 StandAG
- Birkholzer, J., Houseworth, J. and Tsang, C.F. (2012) Geologic disposal of high-level radioactive waste: Status, key issues, and trends. Annual Review of Environment and Resources, v.37(1), p.79-106. doi: 10.1146/annurev-environ-090611-143314
- Brown, G., Wyatt, J.L., Tino, P. and Bengio, Y. (2005) Managing diversity in regression ensembles. Journal of Machine Learning Research, v.6(9).
- Choi, J., Chae, B.G., Kihm, Y.H., Park, E.S., Hyun, S., Kim, H.C., ... and Suk, H. (2017) Suggestion of site investigation method for HLW disposal facility. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.54(4), p.303-318. doi: 10.12972/ksmer.2017.54.4.303
- Dou, Z., Huang, X., Wan, W., Zeng, F. and Wang, C. (2024) Development and Application of a New Exponential Model for Hydraulic Conductivity with Depth of Rock Mass. Water, v.16(5), 778. doi: 10.3390/w16050778
- Freeze and Cherry. (1979) Physical Properties and Principles. Groundwater. Englewood Cliffs, NJ: Prentice-Hall.
- Gascoyne, M. (1987) Saline groundwaters and brines in plutons in the Canadian Shield. Saline Water and Gasses in Crystalline Rocks, p.53-68.
- Hubert, M. and Van der Veeken, S. (2008) Outlier detection for skewed data. Journal of Chemometrics: A Journal of the Chemometrics Society, v.22(3-4), p.235-246. https://doi.org/10.1002/cem.1123
- IAEA. (1981) Recommendations on Underground Disposal of Radioactive Wastes, Basic Guidance. Safety Series No. 54
- IAEA. (2000) Safety of Nuclear Power Plants: Design. No. NS-R-1
- IAEA. (2011) Geological Disposal Facilities for Radioactive Waste. No. SSG-14
- Jackson, T.R. and Fenelon, J.M. (2022) Relation of hydraulic conductivity to depth, alteration, and rock type in the volcanic rocks of Pahute Mesa, Nevada, USA. Hydrogeology Journal, v.30(8), p.2417-2432. doi: 10.1007/s10040-022-02571-9
- Jeong, J., Park, E., Emelyanova, I., Pervukhina, M., Esteban, L. and Yun, S.T. (2021) Application of conditional generative model for sonic log estimation considering measurement uncertainty. Journal of Petroleum Science and Engineering, v.196, 108028. doi: 10.1016/j.petrol.2020.108028
- Jung, H., Kim, H.J., Cheong, J.Y., Lee, E.Y. and Yoon, J.H. (2013) Analysis of siting criteria of overseas geological repository (II): Hydrogeology. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), v.11(3), p.253-257. doi: 10.7733/jnfcwtk.2013.11.3.253
- KAERI. (2014) Development of technology for characterization of geological environment in KURT. KAERI/RR-3890/2014
- KHNP[Website]. (2024, Jul 22) https://npp.khnp.co.kr/board/view.khnp?boardId=BBS_0000015&menuCd=DOM_00000010 3008002000&startPage=1&dataSid=10448
- KIGAM. (2019) Hydrogeological investigation of sites for highlevel waste disposal.
- KIGAM. (2021) Research on rock properties in deep environment for HLW geological disposal. GP2020-002-2021
- Kim, E., Kihm, Y.H., Cheon, D.S., Hyun, S.P., Jeon, J.S., Kim, H.C., ... and Choi, S. (2020) Development of geoscientific site assessment factors for the deep geological disposal of HLW in South Korea. Journal of The Korean Society of Mineral and Energy Resources Engineers, v.57(2), p.215-233. doi: 10.32390/ksmer.2020.57.2.215
- Kim, K.S., Kim, C.S. and Bae, D.S. (2002) Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium. The Journal of Engineering Geology, v.12(3), p.319-332.
- KORAD[Website]. (2024, Jul 22) https://www.korad.or.kr/webzine/202312/sub2-4.jsp
- Kuang, X. and Jiao, J.J. (2014) An integrated permeability-depth model for Earth's crust. Geophysical Research Letters, v.41(21), p.7539-7545. doi: 10.1002/2014GL061999
- Lehmann, R. (2013) 3σ-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment. J. Surv. Eng., v.139, p.157-165. doi: 10.1061/(ASCE)SU.1943-5428.0000112
- Manning, C.E. and Ingebritsen, S.E. (1999) Permeability of the continental crust: Implications of geothermal data and metamorphic systems. Reviews of Geophysics, v.37(1), p.127-150. doi: 10.1029/1998RG900002
- Martin Nascimento, G.F., Wurtz, F., Kuo-Peng, P., Delinchant, B. and Jhoe Batistela, N. (2021) Outlier Detection in Buildings' Power Consumption Data Using Forecast Error. Energies, v.14(24), 8325. doi: 10.3390/en14248325
- Merle C. Potter, D.C. Wiggert, Midhat Hondzo. (2001) Mechanics of Fluids. Brooks Cole Thompson Learning.
- NEA. (2019) International Features, Events and Processees (IFEP) List for the Deep Geological Disposal of Radioactive Waste. NEA/RWM/R(2019)1
- Nelder, J.A. and Mead, R. (1965) A simplex method for function minimization. The Computer Journal, v.7(4), p.308-313. doi:10.1093/comjnl/7.4.308
- Neuzil, C.E. (1986) Groundwater flow in low-permeability environments. Water Resources Research, v.22(8), p.1163-1195. doi: 10.1029/WR022i008p01163
- NUMO. (2002) Evaluation Factors for Qualification; Siting Factors for the Selection of Preliminary Investigation Areas
- Piscopo, V., Baiocchi, A., Lotti, F., Ayan, E.A., Biler, A.R., Ceyhan, A.H., ... and Taskin, M. (2018). Estimation of rock mass permeability using variation in hydraulic conductivity with depth: experiences in hard rocks of western Turkey. Bulletin of Engineering Geology and the Environment, v.77(4), p.1663-1671. doi: 10.1007/s10064-017-1058-8
- POSIVA. (2000) The site selection process for a spent fuel repository in Finland - Summaryreport. POSIVA 2000-15
- POSIVA. (2010) Models and Data Report 2010. POSIVA-10-01
- R. ADAM DASTRUP, MA, GISP. (2020). Physical Geography and Natural Disasters
- Saar, M.O. and Manga, M. (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. Journal of Geophysical Research: Solid Earth, 109(B4).
- Sandia National Labs. (2013) Generic Deep Geologic Disposal Safety Case. SAND2013-0974
- Savchenko, A.V., Evstigneev, D.S. and Tsupov, M.N. (2019) Numerical modeling of eccentric mass rotation in chamber filled with fluid. In IOP Conference Series: Earth and Environmental Science (Vol. 262, No. 1, p. 012061). IOP Publishing. https://doi.org/10.1088/1755-1315/262/1/012061
- SKB. (2000) What requirements does the KBS-3 repository make on the host rock.Geoscientific suitability indicators and criteria for siting and site evaluation. TR-00-12
- SKB. (2006a) Data Report for the Safety Assessment SR-Can. TR06-25
- SKB. (2006b) Long-term safety for KBS-3 repositories at Fosmark and Laxemar - a first evaluation: Main report of the SR-Can project. TR-06-09
- US NRC, 10 CFR Part 960
- 산업통상사업부. (2021) 제2차 고준위방사성폐기물 관리 기본계획(안)
- 한국원자력환경공단. (2016) 사용후핵연료 처분