DOI QR코드

DOI QR Code

Numerical Model Applicability Based on a Hydraulic Characteristic Analysis of an Eco-friendly Double-row Submerged Breakwater

  • Yeon-Myeong Jeong (Institute of Marine Industry, Gyeongsang National University) ;
  • Jaeheon Jeong (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Taegun Park (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Ho-Seong Jeon (Corporate Affiliated Research Center, Sinwoo Bio Bank Co., Ltd) ;
  • Dong-Soo Hur (Department of Ocean Civil Engineering, Gyeongsang National University)
  • Received : 2024.07.05
  • Accepted : 2024.08.02
  • Published : 2024.08.31

Abstract

In this study, a submerged breakwater with effective wave control and eco-friendly characteristics is developed and proposed. Hydraulic experiments are conducted to compare the hydraulic performance of a submerged breakwater and an eco-friendly double-row submerged breakwater. The hydraulic characteristics are analyzed based on wave reflections and the transmission-splitting method for each experimental cross-section. This splitting technique utilizes Goda's two-point method, which employs the spectra of two irregular superposed wave fields. In addition, the reliability of the results obtained from the hydraulic experiments is discussed by comparing the results with empirical formulas. The eco-friendly double-row submerged breakwater features approximately half the width of a typical submerged breakwater. Nevertheless, its transmission coefficient (KT) is approximately 20% more effective, and the difference in the average reflection coefficient (KR) values between the two is approximately 0.17. Moreover, the dissipation coefficient (KD) shows a generally similar trend. Based on these experimental results, the hydraulic performance of the eco-friendly double-row submerged breakwater is more efficient regarding wave control, compared with a typical submerged breakwater. These hydraulic characteristics confirm that the numerical model developed for the eco-friendly double-row submerged breakwater accurately reproduces the KT, KR, and KD values within ±5%.

Keywords

Acknowledgement

This study is supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) and funded by the Ministry of Oceans and Fisheries, Korea (RS-2023-00256687).

References

  1. Ahn, H. K., Lee, S. H., & Ji, M. K. (2017a). Development of ecological scour protection technique with non-toxic materials and examination of filed application. International Journal of Environmental Science and Development, 8(3), 164-167. https://doi.org/10.18178/ijesd.2017.8.3.940 
  2. Ahn, H. K., Lee, S. H., & Lee, I. T. (2017b). Biological assessments on bio-polymer coated with non-toxic materials. International Journal of Environmental Science and Development, 8(10), 724-727. https://doi.org/10.18178/ijesd.2017.8.10.1046 
  3. Behera, H., & Khan, M. B. (2019). Numerical modeling for wave attenuation in double trapezoidal porous structures. Ocean Engineering, 184, 91-106. https://doi.org/10.1016/j.oceaneng.2019.05.006 
  4. Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum model for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y 
  5. Cho, W. C. (2006). Optimum distance between multiple submerged breakwaters for wave screening performance enhancement. Journal of ocean Engineering and Technology, 20(6), 82-87 
  6. Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48(2), 89-94. 
  7. Goda, Y., & Suzuki, T. (1976). Estimation of incident and reflected waves in random wave experiments. In Coastal Engineering 1976, ASCE. 828-845. https://doi.org/10.1061/9780872620834.048 
  8. Ha, S. W., Jung, S. H., Choi, H. S., & Kim, D. S. (2009). Control of short-period waves and tsunamis (solitary waves) using two-rowed submerged breakwater. Proceedings of 35th Annual Conference of the Korean Society of civil Engineers, 2992-2995. 
  9. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5 
  10. Hur, D. S., & Choi, D. S. (2008). Effect of the slope gradient of a permeable submerged breakwater on wave field around it. KSCE Journal of Civil and Environmental Engineering Research, 28(2B), 249-259. https://doi.org/10.12652/Ksce.2008.28.2B.249 
  11. Hur, D. S., Lee, W. D., Kim, M. K., & Yoon, J.S. (2013) Application of 3-D numerical method (LES-WASS-3D) to estimation of nearshore current at Songdo Beach with submerged breakwaters. Journal of Ocean Engineering and Technology, 27(4), 14-21. https://doi.org/10.5574/KSOE.2013.27.4.014 
  12. Kang, J. G., & Ahn, H. K. (2023). A study of real scale experiment on protection technique of levee overflow failure using mixed bio-polymer and riprap. Ecology and Resilient Infrastructure, 10(1), 1-10. 
  13. Lee, K. H., Jung, S. H., Ha, S. W., & Kim, D. S. (2010). Control of short-period and solitary waves using two-rowed impermeable rectangular submerged dike. Journal of Korean Society of Coastal and Ocean Engineers, 22(4), 203-214. 
  14. Lee, W. D., Hur, D. S., Kim, H. S., & Jo, H. J. (2016). Numerical analysis on self-burial mechanism of submarine pipeline with spoiler under steady flow. Journal of Korean Society of Coastal and Ocean Engineers, 28(3), 146-159. https://doi.org/10.9765/KSCOE.2016.28.3.146 
  15. Lee, S. H., Kang, J. G., & Ahn, H. K., (2022). A study on the hydraulic stability of a multi-layered porous riverbank revetment using castor oil-based biopolymer. Ecology and Resilient Infrastructure, 9(4), 228-236. https://doi.org/10.17820/eri.2022.9.4.228 
  16. Lee, D. J., Jang, M. H., Kang, J. G., & Ahn, H. K. (2024). A study on fish movement efficiency in biopolymer and aggregate mixed fishway. Ecology and Resilient Infrastructure, 11(1), 11-22. https://doi.org/10.17820/eri.2024.11.1.011 
  17. Mitsuyasu, H. (1969). On the growth of wind-generated waves (II). Research Institute for Applied Mechanics, Kyushu University, 17(59), 235-248. 
  18. Park, C.J., Ahn, H.K., Gye, M.C., & Lee, T.H. (2015). Effects of concrete materials for the stream restoration on Bombina orientalis embryos. Ecology and Resilient Infrastructure, 2(2), 147-153. https://doi.org/10.17820/eri.2015.2.2.147 
  19. Patil, S. B., & Karmakar, D. (2021). Performance evaluation of submerged breakwater using multi-domain boundary element method. Applied Ocean Research, 114, 102760. https://doi.org/10.1016/j.apor.2021.102760 
  20. Sakakiyama, T., & Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwaters. In Coastal Engineering 1992, 1517-1530. https://doi.org/10.1061/9780872629332.115 
  21. Shih, R. S., Weng, W. K., & Chou, C. R. (2013). Numerical modeling of wave field around multiple submerged breakwaters. Marine Science, 3(3), 65-78. https://doi.org/10.5923/j.ms.20130303.02 
  22. Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2. 
  23. van der Meer. J.W., Briganti, R., Zanuttigh, B., & Wang, B. (2005). Wave transmission and reflection at low-crested structure: Design formulae, oblique wave attack and spectral change. Coastal Engineering, 52(10-11), 915-929. https://doi.org/10.1016/j.coastaleng.2005.09.005 
  24. Yun, D.Y., Hur, D.S., Kim. D.S., & Kang, J.B. (1995). Optimum Inner width of the Submerged Breakwater with Two Rows for the Controlling Long Period Waves. Journal of Korean Port Research, 9(2), 51-64