Genome Reports

Complete Genome Sequence of *Bacillus safensis* DMB13 Exhibiting Non-Antibacterial Activity

Do-Won Jeong*

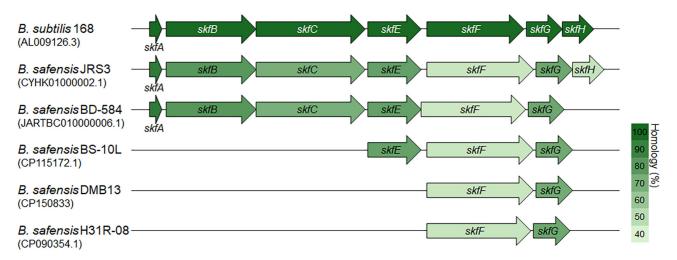
Department of Food and Nutrition, Dongduk Women's University, Seoul 02748, Republic of Korea

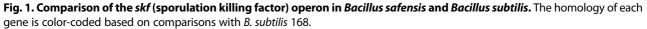
Received: April 23, 2024 / Revised: May 7, 2024 / Accepted: May 8, 2024

Strain *Bacillus safensis* DMB13 exhibiting protease and lipase activity was isolated from fermented kinchi in the previous study. Phenotypically, strain DMB13 showed no antibacterial activity. Thus, the complete genome sequence was analyzed to understand the phenotype of strain DMB13. The genome is 3,856,276-bp with a G+C content of 41.61 mol% and consists of a single circular 3,849,633-bp chromosome and one circular plasmids. Two genes related to bacteriocin production, skfF and skfG, were identified; however, six other genes in the skf operon were not detected. The genome includes 54 protease- and 5 lipase-encoding genes.

Keywords: Bacillus safensis, kimchi, bacteriocin, skf operon, protease, lipase

Bacillus safensis was initially discovered in the spacecraft-assembly facility at the Jet Propulsion Laboratory [1]. Since then, it has been isolated from various sources, including food products, such as honey, bread, and syrup. In addition to its presence in extreme environments, B. safensis shows high antimicrobial activity and is under investigation owing to its potential as a biopreservative in aquaculture [2, 3]. In a previous study, we isolated B. safensis from kimchi [4]. Antibiotic susceptibility testing and functional assays revealed four starter candidates out of 65 Bacillus strains, one of which was *B. safensis* DMB13 (initially designated as strain GN5_10) [4]. In this study, we evaluated the antimicrobial activity of strain DMB13. However, B. safensis DMB13 showed no antibacterial activity against nine species of foodborne pathogens, Bacillus cereus KCCM 11341, Enterococcus faecalis KCTC 2011, Listeria monocytogenes ATCC 13932, Staphylococcus aureus ATCC 12692, Alcaligenes xylosoxidans KCCM 40240,


*Corresponding author Phone: +82-2-940-4463, Fax: +82-2-940-4610 E-mail: jeongdw@dongduk.ac.kr


© 2024, The Korean Society for Microbiology and Biotechnology

Escherichia coli O157:H7 EDL 933, Flavobacterium sp. KCCM 11374, Salmonella enterica KCCM 11862, and Vibrio parahaemolyticus KCTC 2729, contradicting previous findings indicating that *B. safensis* shows strong antibacterial activity [2, 3]. Therefore, to uncover genetic factors influencing the antibacterial properties the strain and explain variation among studies, we analyzed the genome of *B. safensis* DMB13. Additionally, through genomic analyses, we evaluated its susceptibility to antibiotics, lack of hemolysis, and protease and lipase activity.

Microbiology and Biotechnology Letter

Whole-genome sequencing of *B. safensis* DMB13 was conducted at CJ Bioscience, Inc. (South Korea) using the PacBio Sequel 10K system. Sequencing yielded 50,427 reads with a coverage of 522.37×, from which two contigs were generated using the FLYE assembler (version 2.8.3) in SMRT Link (PacBio). Annotation was carried out using the NCBI Prokaryotic Genome Annotation Pipeline (version 4.6). Annotated genes were classified into functional categories using the Clusters of Orthologous Groups (COG) database [5], and metabolic pathways were examined using Rapid Annotation using Subsystem Technology [6].

The complete genome of B. safensis DMB13 consisted of a circular 3,849,633 bp chromosome and a 6,643 bp plasmid pDMB13. The G+C content was 41.61 mol%. The average nucleotide identity between the genome of B. safensis DMB13 and those of B. safensis subsp. safensis FO-36b^T and *B. safensis* subsp. osmophilus CECT 9344^T were 97.29% and 96.25%, respectively. The genome harbored 3,968 open reading frames, including 3,862 protein-coding genes, 81 tRNA genes, 24 rRNA genes, and 1 additional RNA gene. Using COG, functional annotations were obtained for 3,561 genes, with significant enrichment for amino acid transport and metabolism (304 genes, 8.5%), transcription (291 genes, 8.2%), and carbohydrate transport and metabolism (255 genes, 7.2%). In a SEED subsystem analysis, 1,577 genes were annotated, and the most abundant subsystem category was amino acids and derivatives (280 genes, 17.8%), followed by carbohydrates (236 genes, 15.0%).

Although *B. safensis* strain DMB13 lacked antimicrobial activity, it contained genes related to the bacteriocin gene cluster, skfF and skfG (Fig. 1). However, the genome of strain DMB13 did not possess the entire operon necessary for the production of sporulation killing factor (skf) (Fig. 1). In contrast, *Bacillus subtilis* 168, reported to exhibit antimicrobial activity, had the skfoperon (Fig. 1) [7]. Additionally, *B. safensis* JRS3 harbored the skf operon. The exact influence of Skf on interspecific antimicrobial activity is not well understood, although it is known to lyse sibling cells [8]. Nevertheless, if the sporulation killing factor generated from the skf operon is responsible for antimicrobial activity, the lack of antimicrobial activity in strain DMB13 can be attributed to the lack of the full-length skf operon.

B. safensis strain DMB13 exhibited sensitivity to eight antibiotics: ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, streptomycin, tetracycline, and vancomycin [4]. Specific antibiotic resistance genes for these eight antibiotics were not detected in the genome. Although hemolysis was not observed, a hemolysin-3 like protein gene (WNC56_10320) was detected. However, our previous research indicated that this gene is ineffective [9]. Consistent with these previous findings, hemolysis was not observed in this study, supporting the ineffectiveness of this gene.

B. safensis strain DMB13 exhibited lipase and protease activities and its genome possessed five lipase genes and 54 protease genes (Table 1). These genes may influence the lipase and protease activities of strain DMB13. This study provides a basis for further studies aimed at the identification of genes associated with the antimicrobial activity of *B. safensis* and provides insight into its functionality.

Nucleotide Sequence Accession Number

The complete genome sequence of *Bacillus safensis* DMB13 has been deposited in DDBJ/ENA/GenBank under accession number CP150833 and CP150834.

Gene locus	E.C. no.	Product	COG	Gene
₋ipase				
WNC56_02285	-	Spore germination lipase LipC	E	-
WNC56_02730	3.1.1	Hormone-sensitive lipase	I	aes
WNC56_13830	3.1.1.3	Triacylglycerol lipase	S	lip
WNC56_14175	3.1.1.5	Lysophospholipase	I	pldB
WNC56_16350	3.1.1.1	Carboxylesterase	S	yvaK
Protease				
WNC56_00285	-	Sporulation-specific protease YabG	S	-
WNC56_01390	3.4.21	Cell wall-associated protease	0	wprA
WNC56_01450	3.4.21	Minor extracellular protease Epr	0	epr
WNC56_01635	-	Cysteine protease StiP	S	-
WNC56_02530	-	Putative rhomboid protease YdcA	S	-
WNC56_02980	-	Putative membrane peptidase YdiL	S	-
WNC56_04470	3.4.21.89	Signal peptidase I	U	lepB
WNC56_04755	3.4	Probable peptidoglycan endopeptidase LytE	M M	lytE
WNC56_05120	3.4.24.84	Ste24 endopeptidase	0	-
WNC56_05515	3.4.21.89	Signal peptidase l	U	lepB
WNC56_05975	3.4.24	Oligoendopeptidase F like protein	Е	, pepF
WNC56_06500	3.4.21.107	Peptidase Do	0	degP
WNC56_06545	3.4.14.13	Gamma-D-glutamyl-L-lysine dipeptidyl-peptidase	М	ykfC
WNC56_06660	3.4.21	Major intracellular serine protease	0	isp
	3.4.24	Protease HtpX like protein	0	, htpX
	-	ATP-dependent Clp protease ATP-binding subunit ClpE	0	-
WNC56_07095	-	Putative L,D-transpeptidase YkuD	S	-
WNC56_07270	3.4.21.89	Signal peptidase I	U	lepB
WNC56_07720	3.4.21	Bacillopeptidase	ojs	bpr
	3.4.23	Sporulation sigma-E factor-processing peptidase	S	, spollGA
WNC56_07820	3.4.23.36	Signal peptidase II	MU	lspA
WNC56_08170	3.4.25.2	HslUHslV peptidase	0	hslV
WNC56 08175	_	ATP-dependent protease ATPase subunit ClpY	0	_
WNC56_08380	3.4.24	Probable protease eep	M	rseP
WNC56_08535	3.4.24	Uncharacterized zinc protease YmxG	0	pqqL
WNC56_08580	3.4.21.92	Endopeptidase Clp	0	clpP
WNC56_08750	3.4.21	Serine protease AprX	0	aprX
WNC56_09020	3.4.21.19	Glutamyl endopeptidase	0	sspA
WNC56_10085	3.4	D-gamma-glutamyl-meso-diaminopimelic acid endopeptidase CwIS	M M	cwlS
WNC56_10155	3.4.21.102	C-terminal processing peptidase	M	prc
WNC56_10900	-	Protease PrsW	S	-
WNC56_11525	3.4.21.116	SpolVB peptidase	M	spoIVB
WNC56_11730	3.4.21.89	Signal peptidase I	U	sipW
WNC56_11825	3.4.19.11	Gamma-D-glutamyl-meso-diaminopimelate peptidase	E	yqgT
WNC56_11845	3.4.19.11	Rhomboid protease	S	gluP
	3.4.24.78	GPR endopeptidase	0	gpr

Table 1. Putative lipase and protease genes in the genome of *Bacillus safensis* DMB13.

Gene locus	E.C. no.	Product	COG	Gene
WNC56_12595	3.4	Uncharacterized protease YrrO	0	-
WNC56_12600	3.4	Uncharacterized protease YrrN	0	-
WNC56_13060	3.4.21.53	Endopeptidase La	0	lon
WNC56_13065	3.4.21.53	Endopeptidase La	0	IonB
WNC56_13070	-	ATP-dependent Clp protease ATP-binding subunit ClpX	0	-
WNC56_13685	3.4.21	Putative signal peptide peptidase SppA	OU	sppA
WNC56_14205	3.4.14.5	Dipeptidyl-peptidase IV	E	-
WNC56_15220	-	Putative membrane protease YugP	S	-
WNC56_15640	-	Uncharacterized peptidase	E	-
WNC56_15700	3.4	L-AlaD-Glu endopeptidase	М	lytH
WNC56_15950	3.4.21.107	Peptidase Do	0	degP
WNC56_16675	3.4.21.92	Endopeptidase Clp	0	clpP
WNC56_16745	3.4	Peptidoglycan DL-endopeptidase CwlO	M S	cwlO
WNC56_16965	3.4.21.102	C-terminal processing peptidase	М	prc
WNC56_16975	3.4	Peptidoglycan DL-endopeptidase CwlO	S M	cwlO
WNC56_18375	3.4.21	Minor extracellular protease vpr	0	vpr
WNC56_19440	3.4.21.107	Peptidase Do	0	degP
WNC56_19520	3.4.21.26	Prolyl oligopeptidase	S	-

Table 1. Putative lipase and protease genes in the genome of *Bacillus safensis* DMB13.

The Enzyme Commission (EC) number is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze. The EC numbers are based on the genes of strain DMB13 and gene are assigned by BlastKoALA. The Clusters of Orthologous Group (COG) categorization was generated by annotated gene functions.

Acknowledgments

This study was conducted in support of the sabbatical program of Dongduk Women's University in 2023.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

- Satomi M, La Duc MT, Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Microbiol. 56: 1735-1740.
- Romero-Severson J, Moran TE, Shrader DG, Fields FR, Pandey-Joshi S, Thomas CL, et al. 2021. A seed-endophytic Bacillus safensis strain with antimicrobial activity has genes for novel bacteriocinlike antimicrobial peptides. Front. Microbiol. 12: 734216.
- 3. Wu PS, Liu CH, Hu SY. 2021. Probiotic *Bacillus safensis* NPUST1 administration improves growth performance, gut microbiota,

and innate immunity against *Streptococcus* iniae in Nile tilapia (*Oreochromis niloticus*). *Microorganisms* **9**: 2494.

- Kim T, Heo S, Na HE, Lee G, Kim JH, Kwak MS, et al. 2022. Bacterial community of galchi-baechu kimchi based on culture-dependent and - independent investigation and selection of starter candidates. J. Microbiol. Biotechnol. 32: 341-347.
- Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res.* 28: 33-36.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
- Kwon G-H, Lee, HA, Kim, J-H. 2010. A bacteriocin of 5-kDa in size secreted by *Bacillus subtilis* 168. *Korean J. Microbiol. Biotechnol.* 38: 163-167.
- 8. Allenby NE, Watts CA, Homuth G, Pragai Z, Wipat A, Ward AC, *et al.* 2006. Phosphate starvation induces the sporulation killing factor of *Bacillus subtilis. J. Bacteriol.* **188**: 5299-5303.
- Jeong DW, Heo S, Ryu S, Blom J, Lee JH. 2017. Genomic insights into the virulence and salt tolerance of *Staphylococcus equorum*. *Sci. Rep.* 7: 5383.