DOI QR코드

DOI QR Code

The Innate Immune Viral Sensors and Their Functional Crosstalk

  • Ji-Seung Yoo (KNU Institute for Microorganisms, Kyungpook National University)
  • Received : 2024.06.02
  • Accepted : 2024.06.05
  • Published : 2024.06.28

Abstract

The precise and elaborate regulation of signaling cascades by diverse cytoplasmic and endosomal antiviral sensors is crucial for maintaining immune homeostasis and defending against viral pathogens. Receptors and enzymes that recognize foreign nucleic acids play a pivotal role in inducing antiviral interferon programs, serving as the first line of defense against various DNA and RNA viruses. Recent research has increasingly highlighted the crosstalk between nucleic acid sensors in detecting multiple virus invasions, resulting in amplified antiviral signals and compensating for any missing roles. This review provides an update on recent findings regarding the interplay of RNA sensors for DNA virus recognition.

Keywords

Acknowledgement

This research(or work) was supported by Kyungpook National University Research Fund, 2023.

References

  1. Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826. 
  2. Carpenter S, O'Neill LAJ. 2024. From periphery to center stage: 50 years of advancements in innate immunity. Cell 187: 2030-2051. 
  3. Kasuga Y, Zhu B, Jang KJ, Yoo JS. 2021. Innate immune sensing of coronavirus and viral evasion strategies. Exp. Mol. Med. 53: 723-736. 
  4. Yoo JS. 2024. Cellular stress responses against Coronavirus infection: A means of the innate antiviral defense. J. Microbiol. Biotechnol. 34: 1-9. 
  5. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737. 
  6. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. 
  7. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, et al. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175: 2851-2858. 
  8. Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820. 
  9. Peisley A, Wu B, Yao H, Walz T, Hur S. 2013. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 51: 573-583. 
  10. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152: 276-289. 
  11. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314: 994-997. 
  12. Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, et al. 2014. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 514: 372-375. 
  13. Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, et al. 2009. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31: 25-34. 
  14. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205: 1601-1610. 
  15. Yoneyama M, Kato H, Fujita T. 2024. Physiological functions of RIG-I-like receptors. Immunity 57: 731-751. 
  16. Balachandran S, Barber GN. 2007. PKR in innate immunity, cancer, and viral oncolysis. Methods Mol. Biol. 383: 277-301. 
  17. Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, et al. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62: 379-390. 
  18. Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7: e43031. 
  19. Yoo JS, Takahasi K, Ng CS, Ouda R, Onomoto K, Yoneyama M, et al. 2014. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog. 10: e1004012. 
  20. Yoo JS, Kato H, Fujita T. 2014. Sensing viral invasion by RIG-I like receptors. Curr. Opin. Microbiol. 20: 131-138. 
  21. Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, et al. 2010. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140: 338-348. 
  22. Hornung V, Hartmann R, Ablasser A, Hopfner KP. 2014. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14: 521-528. 
  23. Kristiansen H, Scherer CA, McVean M, Iadonato SP, Vends S, Thavachelvam K, et al. 2010. Extracellular 2'-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J. Virol. 84: 11898-11904. 
  24. Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, et al. 2014. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol. Cell 53: 221-234. 
  25. Malathi K, Dong B, Gale M, Jr., Silverman RH. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448: 816-819. 
  26. Ibsen MS, Gad HH, Andersen LL, Hornung V, Julkunen I, Sarkar SN, et al. 2015. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Res. 43: 5236-5248. 
  27. Kawai T, Ikegawa M, Ori D, Akira S. 2024. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 57: 649-673. 
  28. Li XD, Chen ZJ. 2012. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. Elife 1: e00102. 
  29. Takaoka A, Taniguchi T. 2008. Cytosolic DNA recognition for triggering innate immune responses. Adv. Drug Deliv. Rev. 60: 847-857. 
  30. Briard B, Place DE, Kanneganti TD. 2020. DNA Sensing in the Innate Immune response. Physiology (Bethesda) 35: 112-124. 
  31. Caneparo V, Landolfo S, Gariglio M, De Andrea M. 2018. The absent in melanoma 2-like receptor IFN-inducible protein 16 as an inflammasome regulator in systemic Lupus erythematosus: The dark side of sensing microbes. Front. Immunol. 9: 1180. 
  32. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10: 1065-1072. 
  33. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323: 1057-1060. 
  34. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509-513. 
  35. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10: 266-272. 
  36. Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786-791. 
  37. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 51: 226-235. 
  38. Kumagai Y, Takeuchi O, Akira S. 2008. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 60: 795-804. 
  39. Naesens L, Haerynck F, Gack MU. 2023. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol. 44: 435-449. 
  40. Dremel SE, Sivrich FL, Tucker JM, Glaunsinger BA, DeLuca NA. 2022. Manipulation of RNA polymerase III by Herpes Simplex Virus-1. Nat. Commun. 13: 623. 
  41. Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, et al. 2016. Sensing of latent EBV infection through exosomal transfer of 5'pppRNA. Proc. Natl. Acad. Sci. USA 113: E587-596. 
  42. Minamitani T, Iwakiri D, Takada K. 2011. Adenovirus virus-associated RNAs induce type I interferon expression through a RIG-I-mediated pathway. J. Virol. 85: 4035-4040. 
  43. Ogunjimi B, Zhang SY, Sorensen KB, Skipper KA, Carter-Timofte M, Kerner G, et al. 2017. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest. 127: 3543-3556. 
  44. Zhao Y, Ye X, Dunker W, Song Y, Karijolich J. 2018. RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nat. Commun. 9: 4841. 
  45. Myskiw C, Arsenio J, Booy EP, Hammett C, Deschambault Y, Gibson SB, et al. 2011. RNA species generated in vaccinia virus infected cells activate cell type-specific MDA5 or RIG-I dependent interferon gene transcription and PKR dependent apoptosis. Virology 413: 183-193. 
  46. Wang F, Gao X, Barrett JW, Shao Q, Bartee E, Mohamed MR, et al. 2008. RIG-I mediates the co-induction of tumor necrosis factor and type I interferon elicited by myxoma virus in primary human macrophages. PLoS Pathog. 4: e1000099.