Acknowledgement
This research(or work) was supported by Kyungpook National University Research Fund, 2023.
References
- Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826.
- Carpenter S, O'Neill LAJ. 2024. From periphery to center stage: 50 years of advancements in innate immunity. Cell 187: 2030-2051.
- Kasuga Y, Zhu B, Jang KJ, Yoo JS. 2021. Innate immune sensing of coronavirus and viral evasion strategies. Exp. Mol. Med. 53: 723-736.
- Yoo JS. 2024. Cellular stress responses against Coronavirus infection: A means of the innate antiviral defense. J. Microbiol. Biotechnol. 34: 1-9.
- Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737.
- Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105.
- Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, et al. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175: 2851-2858.
- Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820.
- Peisley A, Wu B, Yao H, Walz T, Hur S. 2013. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 51: 573-583.
- Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152: 276-289.
- Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314: 994-997.
- Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, et al. 2014. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 514: 372-375.
- Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, et al. 2009. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31: 25-34.
- Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205: 1601-1610.
- Yoneyama M, Kato H, Fujita T. 2024. Physiological functions of RIG-I-like receptors. Immunity 57: 731-751.
- Balachandran S, Barber GN. 2007. PKR in innate immunity, cancer, and viral oncolysis. Methods Mol. Biol. 383: 277-301.
- Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, et al. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62: 379-390.
- Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7: e43031.
- Yoo JS, Takahasi K, Ng CS, Ouda R, Onomoto K, Yoneyama M, et al. 2014. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog. 10: e1004012.
- Yoo JS, Kato H, Fujita T. 2014. Sensing viral invasion by RIG-I like receptors. Curr. Opin. Microbiol. 20: 131-138.
- Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, et al. 2010. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140: 338-348.
- Hornung V, Hartmann R, Ablasser A, Hopfner KP. 2014. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14: 521-528.
- Kristiansen H, Scherer CA, McVean M, Iadonato SP, Vends S, Thavachelvam K, et al. 2010. Extracellular 2'-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J. Virol. 84: 11898-11904.
- Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, et al. 2014. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol. Cell 53: 221-234.
- Malathi K, Dong B, Gale M, Jr., Silverman RH. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448: 816-819.
- Ibsen MS, Gad HH, Andersen LL, Hornung V, Julkunen I, Sarkar SN, et al. 2015. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Res. 43: 5236-5248.
- Kawai T, Ikegawa M, Ori D, Akira S. 2024. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 57: 649-673.
- Li XD, Chen ZJ. 2012. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. Elife 1: e00102.
- Takaoka A, Taniguchi T. 2008. Cytosolic DNA recognition for triggering innate immune responses. Adv. Drug Deliv. Rev. 60: 847-857.
- Briard B, Place DE, Kanneganti TD. 2020. DNA Sensing in the Innate Immune response. Physiology (Bethesda) 35: 112-124.
- Caneparo V, Landolfo S, Gariglio M, De Andrea M. 2018. The absent in melanoma 2-like receptor IFN-inducible protein 16 as an inflammasome regulator in systemic Lupus erythematosus: The dark side of sensing microbes. Front. Immunol. 9: 1180.
- Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10: 1065-1072.
- Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323: 1057-1060.
- Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509-513.
- Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10: 266-272.
- Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786-791.
- Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 51: 226-235.
- Kumagai Y, Takeuchi O, Akira S. 2008. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 60: 795-804.
- Naesens L, Haerynck F, Gack MU. 2023. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol. 44: 435-449.
- Dremel SE, Sivrich FL, Tucker JM, Glaunsinger BA, DeLuca NA. 2022. Manipulation of RNA polymerase III by Herpes Simplex Virus-1. Nat. Commun. 13: 623.
- Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, et al. 2016. Sensing of latent EBV infection through exosomal transfer of 5'pppRNA. Proc. Natl. Acad. Sci. USA 113: E587-596.
- Minamitani T, Iwakiri D, Takada K. 2011. Adenovirus virus-associated RNAs induce type I interferon expression through a RIG-I-mediated pathway. J. Virol. 85: 4035-4040.
- Ogunjimi B, Zhang SY, Sorensen KB, Skipper KA, Carter-Timofte M, Kerner G, et al. 2017. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest. 127: 3543-3556.
- Zhao Y, Ye X, Dunker W, Song Y, Karijolich J. 2018. RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nat. Commun. 9: 4841.
- Myskiw C, Arsenio J, Booy EP, Hammett C, Deschambault Y, Gibson SB, et al. 2011. RNA species generated in vaccinia virus infected cells activate cell type-specific MDA5 or RIG-I dependent interferon gene transcription and PKR dependent apoptosis. Virology 413: 183-193.
- Wang F, Gao X, Barrett JW, Shao Q, Bartee E, Mohamed MR, et al. 2008. RIG-I mediates the co-induction of tumor necrosis factor and type I interferon elicited by myxoma virus in primary human macrophages. PLoS Pathog. 4: e1000099.