DOI QR코드

DOI QR Code

Characterization of a Small Plaque Variant Derived from Genotype V Japanese Encephalitis Virus Clinical Isolate K15P38

  • Woo-Jin Kim (Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea) ;
  • Ah-Ra Lee (Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea) ;
  • Su-Yeon Hong (Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea) ;
  • Sang-Hyun Kim (Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea) ;
  • Jae-Deog Kim (Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea) ;
  • Sung Jae Kim (Vaxdigm Co., Ltd.) ;
  • Jae Sang Oh (Department of Neurosurgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Sang-Mu Shim (Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health) ;
  • Sang-Uk Seo (Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea)
  • Received : 2024.04.30
  • Accepted : 2024.06.03
  • Published : 2024.08.28

Abstract

Genotype V (GV) Japanese encephalitis virus (JEV) has been predominantly reported in the Republic of Korea (ROK) since 2010. GV JEV exhibits higher virulence and distinct antigenicity compared to other genotypes, which results in reduced efficacy of existing vaccines. Research on GV JEV is essential to minimize its clinical impact, but the only available clinical strain in the ROK is K15P38, isolated from the cerebrospinal fluid of a patient in 2015. We obtained this virus from National Culture Collection for Pathogens (NCCP) and isolated a variant forming small plaques during our research. We identified that this variant has one amino acid substitution each in the PrM and NS5 proteins compared to the reported K15P38. Additionally, we confirmed that this virus exhibits delayed propagation in vitro and an attenuated phenotype in mice. The isolation of this variant is a critical reference for researchers intending to study K15P38 obtained from NCCP, and the mutations in the small plaque-forming virus are expected to be useful for studying the pathology of GV JEV.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (grant numbers: 2022R1F1A1074547) and the Korea National Institute of Health (KNIH) (project number: 2024ER170100).

References

  1. Solomon T. 2006. Control of Japanese encephalitis--within our grasp? N. Engl. J. Med. 355: 869-871. 
  2. Campbell GL, SL Hills, M Fischer, JA Jacobson, CH Hoke, JM Hombach, et al. 2011. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 89: 766-774, 774a-774e. 
  3. van den Hurk AF, SA Ritchie, JS Mackenzie. 2009. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 54: 17-35. 
  4. Villa TG, AG Abril, S Sanchez, T de Miguel, A Sanchez-Perez. 2021. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch. Microbiol. 203: 443-464. 
  5. Solomon T, H Ni, DW Beasley, M Ekkelenkamp, MJ Cardosa, AD Barrett. 2003. Origin and evolution of Japanese encephalitis virus in southeast Asia. J. Virol. 77: 3091-3098. 
  6. Li MH, SH Fu, WX Chen, HY Wang, YH Guo, QY Liu, et al. 2011. Genotype v Japanese encephalitis virus is emerging. PLoS Negl. Trop. Dis. 5: e1231. 
  7. Kim H, GW Cha, YE Jeong, WG Lee, KS Chang, JY Roh, et al. 2015. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS One 10: e0116547. 
  8. Woo JH, YE Jeong, JE Jo, SM Shim, J Ryou, KC Kim, et al. 2020. Genetic characterization of Japanese encephalitis virus genotype 5 isolated from patient, South Korea, 2015. Emerg. Infect. Dis. 26: 1002-1006. 
  9. Sikazwe C, MJ Neave, A Michie, P Mileto, J Wang, N Cooper, et al. 2022. Molecular detection and characterisation of the first Japanese encephalitis virus belonging to genotype IV acquired in Australia. PLoS Negl. Trop. Dis. 16: e0010754. 
  10. Kwak BO, YJ Hong, DH Kim. 2022. Changes in age-specific seroprevalence of Japanese encephalitis virus and impact of Japanese encephalitis vaccine in Korea. Clin. Exp. Pediatr. 65: 108-114. 
  11. Lee AR, JM Song, and SU Seo. 2022. Emerging Japanese encephalitis virus genotype V in Republic of Korea. J. Microbiol. Biotechnol. 32: 955-959. 
  12. Monath TP. 2002. Japanese encephalitis vaccines: current vaccines and future prospects. Curr. Top. Microbiol. Immunol. 267: 105-138. 
  13. Halstead SB, J Jacobson, and K Dubischar-Kastner. 2012. Japanese encephalitis vaccines. Vaccines, 6th ed.; Plotkin, SA, Orenstein, WA, Offit, PA, Eds., pp. 312-351. 
  14. Cao L, S Fu, X Gao, M Li, S Cui, X Li, et al. 2016. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese Encephalitis Virus. PLoS Negl. Trop. Dis. 10: e0004686. 
  15. Kim JD, AR Lee, DH Moon, YU Chung, SY Hong, HJ Cho, et al. 2024. Efficacy of genotype-matched vaccine against re-emerging genotype V Japanese encephalitis virus. Emerg. Microbes Infect. 13: 2343910. 
  16. de Wispelaere M, MP Frenkiel, P Despres. 2015. A Japanese encephalitis virus genotype 5 molecular clone is highly neuropathogenic in a mouse model: impact of the structural protein region on virulence. J. Virol. 89: 5862-5875. 
  17. Tajima S, K Yagasaki, A Kotaki, T Tomikawa, E Nakayama, ML Moi, et al. 2015. In vitro growth, pathogenicity and serological characteristics of the Japanese encephalitis virus genotype V Muar strain. J. Gen. Virol. 96: 2661-2669. 
  18. Hale JH, KA Lim, and PH Chee. 1952. Japanese type B encephalitis in Malaya. Ann. Trop. Med. Parasitol. 46: 220-226. 
  19. Lee AR, SH Kim, SY Hong, SH Lee, JS Oh, KY Lee, et al. 2024. Characterization of genotype V Japanese encephalitis virus isolates from Republic of Korea. Emerg. Microbes Infect. 13: 2362392. 
  20. Holland J, K Spindler, F Horodyski, E Grabau, S Nichol, S VandePol. 1982. Rapid evolution of RNA genomes. Science 215: 1577-1585. 
  21. Lee DW, YJ Choe, JH Kim, KM Song, H Cho, GR Bae, et al. 2012. Epidemiology of Japanese encephalitis in South Korea, 2007-2010. Int. J. Infect. Dis. 16: e448-e452. 
  22. Sunwoo JS, KH Jung, ST Lee, SK Lee, K Chu. 2016. Reemergence of Japanese encephalitis in South Korea, 2010-2015. Emerg. Infect. Dis. 22: 1841-1843. 
  23. Bae W, JH Kim, J Kim, J Lee, ES Hwang. 2018. Changes of epidemiological characteristics of Japanese encephalitis viral infection and birds as a potential viral transmitter in Korea. J. Korean Med. Sci. 33: e70. 
  24. Kimura-Kuroda J and K Yasui. 1986. Antigenic comparison of envelope protein E between Japanese encephalitis virus and some other flaviviruses using monoclonal antibodies. J. Gen. Virol. 67: 2663-2672. 
  25. Srivastava AK, Y Aira, C Mori, Y Kobayashi, A Igarashi. 1987. Antigenicity of Japanese encephalitis virus envelope glycoprotein V3 (E) and its cyanogen bromide cleaved fragments examined by monoclonal antibodies and Western blotting. Arch. Virol. 96: 97-107. 
  26. Hawkes RA, JT Roehrig, AR Hunt, GA Moore. 1988. Antigenic structure of the Murray valley encephalitis virus E glycoprotein. J. Gen. Virol. 69: 1105-1109. 
  27. Tajima S, S Taniguchi, E Nakayama, T Maeki, T Inagaki, CK Lim, et al. 2020. Amino acid at position 166 of NS2A in Japanese Encephalitis Virus (JEV) is associated with in vitro growth characteristics of JEV. Viruses 12: 709. 
  28. Zhou Y, R Wu, Q Zhao, YF Chang, X Wen, Y Feng, et al. 2018. Mutation of I176R in the E coding region weakens Japanese encephalitis virus neurovirulence, but not its growth rate in BHK-21 cells. Arch. Virol. 163: 1351-1355. 
  29. Tan N, C Chen, Y Ren, R Huang, Z Zhu, K Xu, et al. 2023. Nucleotide at position 66 of NS2A in Japanese encephalitis virus is associated with the virulence and proliferation of virus. Virus Genes 60: 9-17. 
  30. Yang J, H Yang, Z Li, W Wang, H Lin, L Liu, et al. 2017. Envelope protein mutations L107F and E138K are important for neurovirulence attenuation for Japanese encephalitis virus SA14-14-2 strain. Viruses 9: 20. 
  31. Gromowski GD, CY Firestone, SS Whitehead. 2015. Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J. Virol. 89: 6328-6337. 
  32. Poonsiri T, GSA Wright, T Solomon, SV Antonyuk. 2019. Crystal structure of the Japanese encephalitis virus capsid protein. Viruses 11: 623. 
  33. Kim JM, SI Yun, BH Song, YS Hahn, CH Lee, HW Oh, et al. 2008. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J. Virol. 82: 7846-7862. 
  34. Yuan L, XY Huang, ZY Liu, F Zhang, XL Zhu, JY Yu, et al. 2017. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358: 933-936. 
  35. Kato F, S Tajima, E Nakayama, Y Kawai, S Taniguchi, K Shibasaki, et al. 2017. Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Sci. Rep. 7: 16160. 
  36. Edward Z and T Takegami. 1993. Localization and functions of Japanese encephalitis virus nonstructural proteins NS3 and NS5 for viral RNA synthesis in the infected cells. Microbiol. Immunol. 37: 239-243. 
  37. Li C, D Di, H Huang, X Wang, Q Xia, X Ma, et al. 2020. NS5-V372A and NS5-H386Y variations are responsible for differences in interferon alpha/beta induction and co-contribute to the replication advantage of Japanese encephalitis virus genotype I over genotype III in ducklings. PLoS Pathog. 16: e1008773. 
  38. Ishikawa T, M Abe, M Masuda. 2015. Construction of an infectious molecular clone of Japanese encephalitis virus genotype V and its derivative subgenomic replicon capable of expressing a foreign gene. Virus Res. 195: 153-161.