Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (grant numbers: 2022R1F1A1074547) and the Korea National Institute of Health (KNIH) (project number: 2024ER170100).
References
- Solomon T. 2006. Control of Japanese encephalitis--within our grasp? N. Engl. J. Med. 355: 869-871.
- Campbell GL, SL Hills, M Fischer, JA Jacobson, CH Hoke, JM Hombach, et al. 2011. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 89: 766-774, 774a-774e.
- van den Hurk AF, SA Ritchie, JS Mackenzie. 2009. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 54: 17-35.
- Villa TG, AG Abril, S Sanchez, T de Miguel, A Sanchez-Perez. 2021. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch. Microbiol. 203: 443-464.
- Solomon T, H Ni, DW Beasley, M Ekkelenkamp, MJ Cardosa, AD Barrett. 2003. Origin and evolution of Japanese encephalitis virus in southeast Asia. J. Virol. 77: 3091-3098.
- Li MH, SH Fu, WX Chen, HY Wang, YH Guo, QY Liu, et al. 2011. Genotype v Japanese encephalitis virus is emerging. PLoS Negl. Trop. Dis. 5: e1231.
- Kim H, GW Cha, YE Jeong, WG Lee, KS Chang, JY Roh, et al. 2015. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS One 10: e0116547.
- Woo JH, YE Jeong, JE Jo, SM Shim, J Ryou, KC Kim, et al. 2020. Genetic characterization of Japanese encephalitis virus genotype 5 isolated from patient, South Korea, 2015. Emerg. Infect. Dis. 26: 1002-1006.
- Sikazwe C, MJ Neave, A Michie, P Mileto, J Wang, N Cooper, et al. 2022. Molecular detection and characterisation of the first Japanese encephalitis virus belonging to genotype IV acquired in Australia. PLoS Negl. Trop. Dis. 16: e0010754.
- Kwak BO, YJ Hong, DH Kim. 2022. Changes in age-specific seroprevalence of Japanese encephalitis virus and impact of Japanese encephalitis vaccine in Korea. Clin. Exp. Pediatr. 65: 108-114.
- Lee AR, JM Song, and SU Seo. 2022. Emerging Japanese encephalitis virus genotype V in Republic of Korea. J. Microbiol. Biotechnol. 32: 955-959.
- Monath TP. 2002. Japanese encephalitis vaccines: current vaccines and future prospects. Curr. Top. Microbiol. Immunol. 267: 105-138.
- Halstead SB, J Jacobson, and K Dubischar-Kastner. 2012. Japanese encephalitis vaccines. Vaccines, 6th ed.; Plotkin, SA, Orenstein, WA, Offit, PA, Eds., pp. 312-351.
- Cao L, S Fu, X Gao, M Li, S Cui, X Li, et al. 2016. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese Encephalitis Virus. PLoS Negl. Trop. Dis. 10: e0004686.
- Kim JD, AR Lee, DH Moon, YU Chung, SY Hong, HJ Cho, et al. 2024. Efficacy of genotype-matched vaccine against re-emerging genotype V Japanese encephalitis virus. Emerg. Microbes Infect. 13: 2343910.
- de Wispelaere M, MP Frenkiel, P Despres. 2015. A Japanese encephalitis virus genotype 5 molecular clone is highly neuropathogenic in a mouse model: impact of the structural protein region on virulence. J. Virol. 89: 5862-5875.
- Tajima S, K Yagasaki, A Kotaki, T Tomikawa, E Nakayama, ML Moi, et al. 2015. In vitro growth, pathogenicity and serological characteristics of the Japanese encephalitis virus genotype V Muar strain. J. Gen. Virol. 96: 2661-2669.
- Hale JH, KA Lim, and PH Chee. 1952. Japanese type B encephalitis in Malaya. Ann. Trop. Med. Parasitol. 46: 220-226.
- Lee AR, SH Kim, SY Hong, SH Lee, JS Oh, KY Lee, et al. 2024. Characterization of genotype V Japanese encephalitis virus isolates from Republic of Korea. Emerg. Microbes Infect. 13: 2362392.
- Holland J, K Spindler, F Horodyski, E Grabau, S Nichol, S VandePol. 1982. Rapid evolution of RNA genomes. Science 215: 1577-1585.
- Lee DW, YJ Choe, JH Kim, KM Song, H Cho, GR Bae, et al. 2012. Epidemiology of Japanese encephalitis in South Korea, 2007-2010. Int. J. Infect. Dis. 16: e448-e452.
- Sunwoo JS, KH Jung, ST Lee, SK Lee, K Chu. 2016. Reemergence of Japanese encephalitis in South Korea, 2010-2015. Emerg. Infect. Dis. 22: 1841-1843.
- Bae W, JH Kim, J Kim, J Lee, ES Hwang. 2018. Changes of epidemiological characteristics of Japanese encephalitis viral infection and birds as a potential viral transmitter in Korea. J. Korean Med. Sci. 33: e70.
- Kimura-Kuroda J and K Yasui. 1986. Antigenic comparison of envelope protein E between Japanese encephalitis virus and some other flaviviruses using monoclonal antibodies. J. Gen. Virol. 67: 2663-2672.
- Srivastava AK, Y Aira, C Mori, Y Kobayashi, A Igarashi. 1987. Antigenicity of Japanese encephalitis virus envelope glycoprotein V3 (E) and its cyanogen bromide cleaved fragments examined by monoclonal antibodies and Western blotting. Arch. Virol. 96: 97-107.
- Hawkes RA, JT Roehrig, AR Hunt, GA Moore. 1988. Antigenic structure of the Murray valley encephalitis virus E glycoprotein. J. Gen. Virol. 69: 1105-1109.
- Tajima S, S Taniguchi, E Nakayama, T Maeki, T Inagaki, CK Lim, et al. 2020. Amino acid at position 166 of NS2A in Japanese Encephalitis Virus (JEV) is associated with in vitro growth characteristics of JEV. Viruses 12: 709.
- Zhou Y, R Wu, Q Zhao, YF Chang, X Wen, Y Feng, et al. 2018. Mutation of I176R in the E coding region weakens Japanese encephalitis virus neurovirulence, but not its growth rate in BHK-21 cells. Arch. Virol. 163: 1351-1355.
- Tan N, C Chen, Y Ren, R Huang, Z Zhu, K Xu, et al. 2023. Nucleotide at position 66 of NS2A in Japanese encephalitis virus is associated with the virulence and proliferation of virus. Virus Genes 60: 9-17.
- Yang J, H Yang, Z Li, W Wang, H Lin, L Liu, et al. 2017. Envelope protein mutations L107F and E138K are important for neurovirulence attenuation for Japanese encephalitis virus SA14-14-2 strain. Viruses 9: 20.
- Gromowski GD, CY Firestone, SS Whitehead. 2015. Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J. Virol. 89: 6328-6337.
- Poonsiri T, GSA Wright, T Solomon, SV Antonyuk. 2019. Crystal structure of the Japanese encephalitis virus capsid protein. Viruses 11: 623.
- Kim JM, SI Yun, BH Song, YS Hahn, CH Lee, HW Oh, et al. 2008. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J. Virol. 82: 7846-7862.
- Yuan L, XY Huang, ZY Liu, F Zhang, XL Zhu, JY Yu, et al. 2017. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358: 933-936.
- Kato F, S Tajima, E Nakayama, Y Kawai, S Taniguchi, K Shibasaki, et al. 2017. Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Sci. Rep. 7: 16160.
- Edward Z and T Takegami. 1993. Localization and functions of Japanese encephalitis virus nonstructural proteins NS3 and NS5 for viral RNA synthesis in the infected cells. Microbiol. Immunol. 37: 239-243.
- Li C, D Di, H Huang, X Wang, Q Xia, X Ma, et al. 2020. NS5-V372A and NS5-H386Y variations are responsible for differences in interferon alpha/beta induction and co-contribute to the replication advantage of Japanese encephalitis virus genotype I over genotype III in ducklings. PLoS Pathog. 16: e1008773.
- Ishikawa T, M Abe, M Masuda. 2015. Construction of an infectious molecular clone of Japanese encephalitis virus genotype V and its derivative subgenomic replicon capable of expressing a foreign gene. Virus Res. 195: 153-161.