Acknowledgement
This study was supported by the Interventional Therapy Clinical Medical Research Center of Jiangxi Province (No.20223BCG74005).
References
- Song D, Fang G, Greenberg H, Liu SF. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review. Immunol Res. 2015;63:121-130. https://doi.org/10.1007/s12026-015-8703-8
- Li MM, Zheng YL, Wang WD, Lin S, Lin HL. Neuropeptide Y: an update on the mechanism underlying chronic intermittent hypoxia-induced endothelial dysfunction. Front Physiol. 2021;12:712281.
- Oyarce MP, Iturriaga R. Contribution of oxidative stress and inflammation to the neurogenic hypertension induced by intermittent hypoxia. Front Physiol. 2018;9:893.
- Marciante AB, Shell B, Farmer GE, Cunningham JT. Role of angiotensin II in chronic intermittent hypoxia-induced hypertension and cognitive decline. Am J Physiol Regul Integr Comp Physiol. 2021;320:R519-R525. https://doi.org/10.1152/ajpregu.00222.2020
- Chen L, Guo QH, Chang Y, Zhao YS, Li AY, Ji ES. Tanshinone IIA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia. Cardiovasc Pathol. 2017;31:47-53. https://doi.org/10.1016/j.carpath.2017.06.008
- Yang YY, Yu HH, Jiao XL, Li LY, Du YH, Li J, Lv QW, Zhang HN, Zhang J, Hu CW, Zhang XP, Wei YX, Qin YW. Angiopoietin-like proteins 8 knockout reduces intermittent hypoxia-induced vascular remodeling in a murine model of obstructive sleep apnea. Biochem Pharmacol. 2021;186:114502.
- Pantazis A, Olcese R. Biophysics of BK channel gating. Int Rev Neurobiol. 2016;128:1-49. https://doi.org/10.1016/bs.irn.2016.03.013
- Chen G, Li Q, Webb TI, Hollywood MA, Yan J. BK channel modulation by positively charged peptides and auxiliary γ subunits mediated by the Ca2+-bowl site. J Gen Physiol. 2023;155:e202213237.
- Sachse G, Faulhaber J, Seniuk A, Ehmke H, Pongs O. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice. J Physiol. 2014;592:2563-2574. https://doi.org/10.1113/jphysiol.2014.272880
- Granados ST, Latorre R, Torres YP. The membrane cholesterol modulates the interaction between 17-βEstradiol and the BK channel. Front Pharmacol. 2021;12:687360.
- Hu XQ, Xiao D, Zhu R, Huang X, Yang S, Wilson SM, Zhang L. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries. Hypertension. 2012;60:214-222. https://doi.org/10.1161/HYPERTENSIONAHA.112.196097
- Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. Hypoxic regulation of the large-conductance, calcium and voltage-activated potassium channel, BK. Front Physiol. 2021;12:780206.
- Tjong YW, Li M, Hung MW, Wang K, Fung ML. Nitric oxide deficit in chronic intermittent hypoxia impairs large conductance calcium-activated potassium channel activity in rat hippocampal neurons. Free Radic Biol Med. 2008;44:547-557. https://doi.org/10.1016/j.freeradbiomed.2007.10.033
- Hu XQ, Huang X, Xiao D, Zhang L. Direct effect of chronic hypoxia in suppressing large conductance Ca(2+)-activated K(+) channel activity in ovine uterine arteries via increasing oxidative stress. J Physiol. 2016;594:343-356. https://doi.org/10.1113/JP271626
- Yan YR, Zhang L, Lin YN, Sun XW, Ding YJ, Li N, Li HP, Li SQ, Zhou JP, Li QY. Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway. Free Radic Biol Med. 2021;165:401-410. https://doi.org/10.1016/j.freeradbiomed.2021.01.053
- Ning FL, Tao J, Li DD, Tian LL, Wang ML, Reilly S, Liu C, Cai H, Xin H, Zhang XM. Activating BK channels ameliorates vascular smooth muscle calcification through Akt signaling. Acta Pharmacol Sin. 2022;43:624-633. https://doi.org/10.1038/s41401-021-00704-6
- Gu Y, Yu X, Li X, Wang X, Gao X, Wang M, Wang S, Li X, Zhang Y. Inhibitory effect of mabuterol on proliferation of rat ASMCs induced by PDGF-BB via regulating [Ca2+]i and mitochondrial fission/fusion. Chem Biol Interact. 2019;307:63-72. https://doi.org/10.1016/j.cbi.2019.04.023
- Li JR, Zhao YS, Chang Y, Yang SC, Guo YJ, Ji ES. Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway. PLoS One. 2018;13:e0195604.
- Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, Xiong M, Hu K. Chronic intermittent hypoxia vs chronic continuous hypoxia: effects on vascular endothelial function and myocardial contractility. Clin Hemorheol Microcirc. 2020;74:417-427. https://doi.org/10.3233/CH-190706
- Rong Y, Wu Q, Tang J, Liu Z, Lv Q, Ye X, Dong Y, Zhang Y, Li G, Wang S. Danlou tablet may alleviate vascular injury caused by chronic intermittent hypoxia through regulating FIH-1, HIF-1, and Angptl4. Evid Based Complement Alternat Med. 2022;2022:4463108.
- Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT. Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions. Am J Physiol Regul Integr Comp Physiol. 2011;301:R131-R139. https://doi.org/10.1152/ajpregu.00830.2010
- Coelho NR, Tomkiewicz C, Correia MJ, Goncalves-Dias C, Barouki R, Pereira SA, Coumoul X, Monteiro EC. First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacol Res. 2020;159:104869.
- Busse R, Trogisch G, Bassenge E. The role of endothelium in the control of vascular tone. Basic Res Cardiol. 1985;80:475-490. https://doi.org/10.1007/BF01907912
- Krause BJ, Casanello P, Dias AC, Arias P, Velarde V, Arenas GA, Preite MD, Iturriaga R. Chronic intermittent hypoxia-induced vascular dysfunction in rats is reverted by N-acetylcysteine supplementation and arginase inhibition. Front Physiol. 2018;9:901.
- Tjong YW, Li MF, Hung MW, Fung ML. Melatonin ameliorates hippocampal nitric oxide production and large conductance calcium-activated potassium channel activity in chronic intermittent hypoxia. J Pineal Res. 2008;44:234-243. https://doi.org/10.1111/j.1600-079X.2007.00515.x
- Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 2019;20:3775.
- Kwok W, Clemens MG. Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Shock. 2010;33:392-398. https://doi.org/10.1097/SHK.0b013e3181be3e99
- Zou L, Xiong L, Wu T, Wei T, Liu N, Bai C, Huang X, Hu Y, Xue Y, Zhang T, Tang M. NADPH oxidases regulate endothelial inflammatory injury induced by PM2.5 via AKT/eNOS/NO axis. J Appl Toxicol. 2022;42:738-749. https://doi.org/10.1002/jat.4254
- Martins AF, Neto AC, Rodrigues AR, Oliveira SM, Sousa-Mendes C, Leite-Moreira A, Gouveia AM, Almeida H, Neves D. Metformin prevents endothelial dysfunction in endometriosis through downregulation of ET-1 and upregulation of eNOS. Biomedicines. 2022;10:2782.
- Wang Z, Li AY, Guo QH, Zhang JP, An Q, Guo YJ, Chu L, Weiss JW, Ji ES. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats. PLoS One. 2013;8:e58078.
- Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: a review of literature. Drug Des Devel Ther. 2022;16:2919-2931. https://doi.org/10.2147/DDDT.S367229
- Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev AA. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev. 2019;2019:3085756.
- Wang W, Gu H, Li W, Lin Y, Yao X, Luo W, Lu F, Huang S, Shi Y, Huang Z. SRC-3 knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev. 2021;2021:6372430.
- Caballero-Eraso C, Munoz-Hernandez R, Asensio Cruz MI, Moreno Luna R, Carmona Bernal C, Lopez-Campos JL, Stiefel P, Sanchez Armengol A. Relationship between the endothelial dysfunction and the expression of the β1-subunit of BK channels in a non-hypertensive sleep apnea group. PLoS One. 2019;14:e0217138.
- Tsuruma K, Tanaka Y, Shimazawa M, Mashima Y, Hara H. Unoprostone reduces oxidative stress- and light-induced retinal cell death, and phagocytotic dysfunction, by activating BK channels. Mol Vis. 2011;17:3556-3565.
- Zyrianova T, Zou K, Lopez B, Liao A, Gu C, Olcese R, Schwingshackl A. Activation of endothelial large conductance potassium channels protects against TNF-α-induced inflammation. Int J Mol Sci. 2023;24:4087.
- Shi L, Liu B, Li N, Xue Z, Liu X. Aerobic exercise increases BK(Ca) channel contribution to regulation of mesenteric arterial tone by upregulating β1-subunit. Exp Physiol. 2013;98:326-336. https://doi.org/10.1113/expphysiol.2012.066225
- Carlton-Carew SRE, Greenberg HZE, Connor EJ, Zadeh P, Greenwood IA, Albert AP. Stimulation of the calcium-sensing receptor induces relaxations of rat mesenteric arteries by endothelium-dependent and -independent pathways via BKCa and KATP channels. Physiol Rep. 2024;12:e15926.
- Ishida H, Ishikawa T, Saito SY. Enhanced contraction of arterial smooth muscle cell in skin artery is sensitive to hyperpolarization mediated by BKCa channel in chronic constriction injury model rat. Biol Pharm Bull. 2023;46:399-403.
- Feng D, Guo YY, Wang W, Yan LF, Sun T, Liu QQ, Cui GB, Nan HY. α-Subunit tyrosine phosphorylation is required for activation of the large conductance Ca2+-activated potassium channel in the rabbit sphincter of Oddi. Am J Pathol. 2022;192:1725-1744. https://doi.org/10.1016/j.ajpath.2022.08.005
- Sahinturk S. Cilostazol induces vasorelaxation through the activation of the eNOS/NO/cGMP pathway, prostanoids, AMPK, PKC, potassium channels, and calcium channels. Prostaglandins Other Lipid Mediat. 2023;169:106782.