DOI QR코드

DOI QR Code

Construction and validation of a synthetic phage-displayed nanobody library

  • Minju Kim (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Xuelian Bai (Research Center, EPD Biotherapeutics Inc.) ;
  • Hyewon Im (Cancer Research Institute) ;
  • Jisoo Yang (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Youngju Kim (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Minjoo MJ Kim (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Yeonji Oh (Research Center, EPD Biotherapeutics Inc.) ;
  • Yuna Jeon (Research Center, EPD Biotherapeutics Inc.) ;
  • Hayoung Kwon (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Seunghyun Lee (Research Center, EPD Biotherapeutics Inc.) ;
  • Chang-Han Lee (Department of Biomedical Sciences, Seoul National University College of Medicine)
  • 투고 : 2024.04.10
  • 심사 : 2024.04.22
  • 발행 : 2024.09.01

초록

Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phage-displayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.

키워드

과제정보

This work was supported by grant no 03-2020-0300 from the SNUH Research Fund and the Creative-Pioneering Researchers Program through Seoul National University.

참고문헌

  1. Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies' singular traits. Annu Rev Immunol. 2018;36:695-715. https://doi.org/10.1146/annurev-immunol-042617-053327
  2. Konning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, Schroter C, Sellmann C, Hock B, Kolmar H. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol. 2017;45:10-16. https://doi.org/10.1016/j.sbi.2016.10.019
  3. Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest. 2011;40:299-338. https://doi.org/10.3109/08820139.2010.542228
  4. Kang SH, Lee CH. Development of therapeutic antibodies and modulating the characteristics of therapeutic antibodies to maximize the therapeutic efficacy. Biotechnol Bioprocess Eng. 2021;26:295-311. https://doi.org/10.1007/s12257-020-0181-8
  5. Liu C, Lin H, Cao L, Wang K, Sui J. Research progress on unique paratope structure, antigen binding modes, and systematic mutagenesis strategies of single-domain antibodies. Front Immunol. 2022;13:1059771.
  6. Gonzalez-Sapienza G, Rossotti MA, Tabares-da Rosa S. Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications. Front Immunol. 2017;8:977.
  7. Henry KA, MacKenzie CR. Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs. 2018;10:815-826. https://doi.org/10.1080/19420862.2018.1489633
  8. Bao C, Gao Q, Li LL, Han L, Zhang B, Ding Y, Song Z, Zhang R, Zhang J, Wu XH. The application of nanobody in CAR-T therapy. Biomolecules. 2021;11:238.
  9. Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S, Safarzadeh Kozani P. Nanobody-based CAR-T cells for cancer immunotherapy. Biomark Res. 2022;10:24.
  10. Oh J, Warshaviak DT, Mkrtichyan M, Munguia ML, Lin A, Chai F, Pigott C, Kang J, Gallo M, Kamb A. Single variable domains from the T cell receptor β chain function as mono- and bifunctional CARs and TCRs. Sci Rep. 2019;9:17291.
  11. Sun Y, Huang T, Hammarstrom L, Zhao Y. The immunoglobulins: new insights, implications, and applications. Annu Rev Anim Biosci. 2020;8:145-169. https://doi.org/10.1146/annurev-animal-021419-083720
  12. Arbabi-Ghahroudi M. Camelid single-domain antibodies: promises and challenges as lifesaving treatments. Int J Mol Sci. 2022;23:5009.
  13. Muyldermans S. A guide to: generation and design of nanobodies. FEBS J. 2021;288:2084-2102. https://doi.org/10.1111/febs.15515
  14. Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP. Animal immunization, in vitro display technologies, and machine learning for antibody discovery. Trends Biotechnol. 2021;39:1263-1273. https://doi.org/10.1016/j.tibtech.2021.03.003
  15. Zimmermann I, Egloff P, Hutter CAJ, Kuhn BT, Brauer P, Newstead S, Dawson RJP, Geertsma ER, Seeger MA. Generation of synthetic nanobodies against delicate proteins. Nat Protoc. 2020;15:1707-1741. https://doi.org/10.1038/s41596-020-0304-x
  16. Gebauer M, Skerra A. Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol. 2020;60:391-415. https://doi.org/10.1146/annurev-pharmtox-010818-021118
  17. Ferrari D, Garrapa V, Locatelli M, Bolchi A. A novel nanobody scaffold optimized for bacterial expression and suitable for the construction of ribosome display libraries. Mol Biotechnol. 2020;62:43-55. https://doi.org/10.1007/s12033-019-00224-z
  18. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G, Olichon A, Perez F. NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife. 2016;5:e16228.
  19. Valdes-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural insights into the design of synthetic nanobody libraries. Molecules. 2022;27:2198.
  20. Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, Smith JM, Barman S, Zhao F, Keating C, Limbo O, Verma M, Liu J, Stanfield RL, Zhu X, Turner HL, Sok D, Huang PS, Burton DR, Ward AB, et al. Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins. Proc Natl Acad Sci U S A. 2023;120:e2216612120.
  21. Huang CY, Lok YY, Lin CH, Lai SL, Wu YY, Hu CY, Liao CB, Ho CH, Chou YP, Hsu YH, Lo YH, Chern E. Highly reliable GIGA-sized synthetic human therapeutic antibody library construction. Front Immunol. 2023;14:1089395.
  22. Shim H. Synthetic approach to the generation of antibody diversity. BMB Rep. 2015;48:489-494. https://doi.org/10.5483/BMBRep.2015.48.9.120
  23. Muyldermans S. Applications of nanobodies. Annu Rev Anim Biosci. 2021;9:401-421. https://doi.org/10.1146/annurev-animal-021419-083831
  24. Liu W, Song H, Chen Q, Yu J, Xian M, Nian R, Feng D. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol. 2018;96:37-47. https://doi.org/10.1016/j.molimm.2018.02.012
  25. Kulkarni SS, Falzarano D. Unique aspects of adaptive immunity in camelids and their applications. Mol Immunol. 2021;134:102-108. https://doi.org/10.1016/j.molimm.2021.03.001
  26. Ferrara F, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, Honnen W, Calianese D, Huang D, Peng L, Voss JE, Nemazee D, Burton DR, Pinter A, Bradbury ARM. A pandemic-enabled comparison of discovery platforms demonstrates a naive antibody library can match the best immune-sourced antibodies. Nat Commun. 2022;13:462. Erratum in: Nat Commun. 2022;13:2097.
  27. Moreno E, Valdes-Tresanco MS, Molina-Zapata A, Sanchez-Ramos O. Structure-based design and construction of a synthetic phage display nanobody library. BMC Res Notes. 2022;15:124.
  28. Lee CM, Kim M, Park SW, Kang CK, Choe PG, Kim NJ, Jo HJ, Shin HM, Lee CH, Kim HR, Park WB, Oh MD. Clinical outcomes and immunological features of COVID-19 patients receiving B-cell depletion therapy during the Omicron era. Infect Dis (Lond). 2024;56:116-127. https://doi.org/10.1080/23744235.2023.2276784
  29. Kang CK, Kim MG, Park SW, Kim YW, Lee CM, Choe PG, Park WB, Kim NJ, Kim M, Lee S, Kim IS, Lee CH, Shin HM, Kim HR, Oh MD. Comparable humoral and cellular immunity against Omicron variant BA.4/5 of once-boosted BA.1/2 convalescents and twice-boosted COVID-19-naive individuals. J Med Virol. 2023;95:e28558.
  30. Kang CK, Shin HM, Choe PG, Park J, Hong J, Seo JS, Lee YH, Chang E, Kim NJ, Kim M, Kim YW, Kim HR, Lee CH, Seo JY, Park WB, Oh MD. Broad humoral and cellular immunity elicited by one-dose mRNA vaccination 18 months after SARS-CoV-2 infection. BMC Med. 2022;20:181.
  31. Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645-3647 https://doi.org/10.1093/bioinformatics/btx469
  32. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 2009;284:3273-3284. https://doi.org/10.1074/jbc.M806889200
  33. Jin BK, Odongo S, Radwanska M, Magez S. Nanobodies: a review of generation, diagnostics and therapeutics. Int J Mol Sci. 2023;24:5994.
  34. Burkovitz A, Ofran Y. Understanding differences between synthetic and natural antibodies can help improve antibody engineering. MAbs. 2016;8:278-287. https://doi.org/10.1080/19420862.2015.1123365
  35. Pack P, Ilag V, Hardt C, Rheinnecker M, Wellnhofer G, Virnekas B. Trinucleotide-directed mutagenesis (TRIM) and 2nd generation mini-antibodies. Immunotechnology. 1996;2:70.
  36. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296:57-86. https://doi.org/10.1006/jmbi.1999.3444
  37. Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Norenberg S, Stark Y, Kolln J, Popp A, Urlinger S, Enzelberger M. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol. 2011;413:261-278. https://doi.org/10.1016/j.jmb.2011.08.012
  38. Budimir N, Thomas GD, Dolina JS, Salek-Ardakani S. Reversing T-cell exhaustion in cancer: lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol Res. 2022;10:146-153. https://doi.org/10.1158/2326-6066.CIR-21-0515
  39. Coffin SL, Durham MA, Nitschke L, Xhako E, Brown AM, Revelli JP, Villavicencio Gonzalez E, Lin T, Handler HP, Dai Y, Trostle AJ, Wan YW, Liu Z, Sillitoe RV, Orr HT, Zoghbi HY. Disruption of the ATXN1-CIC complex reveals the role of additional nuclear ATXN1 interactors in spinocerebellar ataxia type 1. Neuron. 2023;111:915. Erratum for: Neuron. 2023;111:481-492.e8. https://doi.org/10.1016/j.neuron.2022.11.016
  40. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19:145..