DOI QR코드

DOI QR Code

A Label-Free Fluorescent Amplification Strategy for High-Sensitive Detection of Pseudomonas aeruginosa based on Protective-EXPAR (p-EXPAR) and Catalytic Hairpin Assembly

  • Lu Huang (Interventional Therapy Department, Changsha Fourth Hospital) ;
  • Ye Zhang (Cardiovascular Medicine Department, Changsha Fourth Hospital) ;
  • Jie Liu (Nursing Department, Changsha Fourth Hospital) ;
  • Dalin Zhang (Cardiovascular Medicine Department, Changsha Fourth Hospital) ;
  • Li Li (Cardiovascular Medicine Department, Changsha Fourth Hospital)
  • Received : 2024.05.08
  • Accepted : 2024.05.28
  • Published : 2024.07.28

Abstract

This study presents a fluorescent mechanism for two-step amplification by combining two widely used techniques, exponential amplification reaction (EXPAR) and catalytic hairpin assembly (CHA). Pseudomonas aeruginosa (P. aeruginosa) engaged in competition with the complementary DNA in order to attach to the aptamer that had been fixed on the magnetic beads. The unbound complementary strand in the liquid above was utilized as a trigger sequence to initiate the protective-EXPAR (p-EXPAR) process, resulting in the generation of a substantial quantity of short single-stranded DNA (ssDNA). The amplified ssDNA can initiate the second CHA amplification process, resulting in the generation of many double-stranded DNA (dsDNA) products. The CHA reaction was initiated by the target/trigger DNA, resulting in the release of G-quadruplex sequences. These sequences have the ability to bond with the fluorescent amyloid dye thioflavin T (ThT), generating fluorescence signals. The method employed in this study demonstrated a detection limit of 16 CFU/ml and exhibited a strong linear correlation within the concentration range of 50 CFU/ml to 105 CFU/ml. This method of signal amplification has been effectively utilized to create a fluorescent sensing platform without the need for labels, enabling the detection of P. aeruginosa with high sensitivity.

Keywords

References

  1. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. 2010. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol. Med. Microbiol. 59: 253-268. 
  2. Chuang CH, Janapatla RP, Wang YH, Chang HJ, Chen CL, Chiu CH. 2023. Association between histo-blood group antigens and Pseudomonas aeruginosa-associated diarrheal diseases. J. Microbiol. Immunol. Infect. 56: 367-372. 
  3. Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. 2023. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol. Rev. 47: fuad060. 
  4. Shah S, Wozniak RAF. 2023. Staphylococcus aureus and Pseudomonas aeruginosa infectious keratitis: key bacterial mechanisms that mediate pathogenesis and emerging therapeutics. Front. Cell. Infect. Microbiol. 13: 1250257. 
  5. Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. 2014. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42: 1-7. 
  6. Stratton CW. 1983. Pseudomonas aeruginosa. Infect. Control. 4: 36-40. 
  7. Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. 2013. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ. 28: 13-24. 
  8. Yamin D, Uskokovic V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, et al. 2023. Current and future technologies for the detection of antibiotic-resistant bacteria. Diagnostics (Basel) 13: 3246. 
  9. Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. 2019. A review of methods for the detection of pathogenic microorganisms. Analyst 144: 396-411. 
  10. Lim GM, Kim JK, Kim EJ, Lee CS, Kim W, Kim BG, et al. 2022. Generation of a recombinant antibody for sensitive detection of Pseudomonas aeruginosa. BMC Biotechnol. 22: 21. 
  11. Mauch RM, Rossi CL, Ribeiro JD, Ribeiro AF, Nolasco da Silva MT, Levy CE. 2014. Assessment of IgG antibodies to Pseudomonas aeruginosa in patients with cystic fibrosis by an enzyme-linked immunosorbent assay (ELISA). Diagn. Pathol. 9: 158. 
  12. Locke A, Fitzgerald S, Mahadevan-Jansen A. 2020. Advances in optical detection of human-associated pathogenic bacteria. Molecules 25: 5256. 
  13. Liu S, Huang S, Li F, Sun Y, Fu J, Xiao F, et al. 2023. Rapid detection of Pseudomonas aeruginosa by recombinase polymerase amplification combined with CRISPR-Cas12a biosensing system. Front. Cell. Infect. Microbiol. 13: 1239269. 
  14. Huang S, Wang X, Chen X, Liu X, Xu Q, Zhang L, et al. 2023. Rapid and sensitive detection of Pseudomonas aeruginosa by isothermal amplification combined with Cas12a-mediated detection. Sci. Rep. 13: 19199. 
  15. Soliman M, Said HS, El-Mowafy M, Barwa R. 2022. Novel PCR detection of CRISPR/Cas systems in Pseudomonas aeruginosa and its correlation with antibiotic resistance. Appl. Microbiol. Biotechnol. 106: 7223-7234. 
  16. Deschaght P, Van Daele S, De Baets F, Vaneechoutte M. 2011. PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. J. Cyst. Fibros 10: 293-297. 
  17. Li Y, Xu F, Zhang J, Huang J, Shen D, Ma Y, et al. 2021. Sensitive and label-free detection of bacteria in osteomyelitis through Exo III-assisted cascade signal amplification. ACS Omega 6: 12223-12228. 
  18. Wang H, Chi Z, Cong Y, Wang Z, Jiang F, Geng J, et al. 2018. Development of a fluorescence assay for highly sensitive detection of Pseudomonas aeruginosa based on an aptamer-carbon dots/graphene oxide system. RSC Adv. 8: 32454-32460. 
  19. Wu Z, He D, Cui B, Jin Z. 2018. A bimodal (SERS and colorimetric) aptasensor for the detection of Pseudomonas aeruginosa. Mikrochim. Acta 185: 528. 
  20. Wei L, Wang Z, Wang J, Wang X, Chen Y. 2022. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification. Anal. Chim. Acta 1230: 340357. 
  21. Zheng X, Gao S, Wu J, Hu X. 2020. Recent advances in aptamer-based biosensors for detection of Pseudomonas aeruginosa. Front. Microbiol. 11: 605229. 
  22. Hu C, Zhang J, Jin Y, Ma W, Zhou R, Du H, et al. 2022. Protein-recognition-initiated exponential amplification reaction (PRIEAR) and its application in clinical diagnosis. ChemBioChem. 23: e202100548. 
  23. Zhang YP, Wang HP, Dong RL, Li SY, Wang ZG, Liu SL, et al. 2021. Proximity-induced exponential amplification reaction triggered by proteins and small molecules. Chem. Commun. (Camb.) 57: 4714-4717. 
  24. Qi H, Yue S, Bi S, Ding C, Song W. 2018. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors. Biosens. Bioelectron. 110: 207-217. 
  25. Reid MS, Le XC, Zhang H. 2018. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example. Angew. Chem. Int. Ed. Engl. 57: 11856-11866.