DOI QR코드

DOI QR Code

Efficient CRISPR-Cas12f1-Mediated Multiplex Bacterial Genome Editing via Low-Temperature Recovery

  • Se Ra Lim (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Hyun Ju Kim (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Sang Jun Lee (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University)
  • Received : 2024.03.18
  • Accepted : 2024.05.29
  • Published : 2024.07.28

Abstract

CRISPR-Cas system is being used as a powerful genome editing tool with developments focused on enhancing its efficiency and accuracy. Recently, the miniature CRISPR-Cas12f1 system, which is small enough to be easily loaded onto various vectors for cellular delivery, has gained attention. In this study, we explored the influence of temperature conditions on multiplex genome editing using CRISPR-Cas12f1 in an Escherichia coli model. It was revealed that when two distinct targets in the genome are edited simultaneously, the editing efficiency can be enhanced by allowing cells to recover at a reduced temperature during the editing process. Additionally, employing 3'-end truncated sgRNAs facilitated the simultaneous single-nucleotide level editing of three targets. Our results underscore the potential of optimizing recovery temperature and sgRNA design protocols in developing more effective and precise strategies for multiplex genome editing across various organisms.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-00342735), and the Chung-Ang University research grant in 2023.

References

  1. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.  https://doi.org/10.1126/science.1138140
  2. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.  https://doi.org/10.1126/science.1225829
  3. Lee HJ, Lee SJ. 2021. Advances in accurate microbial genome-editing CRISPR technologies. J. Microbiol. Biotechnol. 31: 903. 
  4. Jeong SH, Lee HJ, Lee SJ. 2023. Recent advances in CRISPR-Cas technologies for synthetic biology. J. Microbiol. 61: 13-36. 
  5. Knott GJ, Doudna JA. 2018. CRISPR-Cas guides the future of genetic engineering. Science 361: 866-869.  https://doi.org/10.1126/science.aat5011
  6. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. 2017. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8: 15179. 
  7. Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho B-K. 2018. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth. Biol. 7: 1085-1094.  https://doi.org/10.1021/acssynbio.7b00462
  8. Li W, Huang C, Chen J. 2022. The application of CRISPR/Cas mediated gene editing in synthetic biology: Challenges and optimizations. Front. Bioeng. Biotechnol. 10: 890155. 
  9. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191.  https://doi.org/10.1038/nature14299
  10. Yan F, Wang W, Zhang J. 2019. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol. Toxicol 35: 489-492.  https://doi.org/10.1007/s10565-019-09489-1
  11. Kumar N, Stanford W, De Solis C, Abraham ND, Dao T-MJ, Thaseen S, et al. 2018. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front. Mol. Neurosci. 11: 413. 
  12. Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, Budre K, et al. 2020. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48: 5016-5023.  https://doi.org/10.1093/nar/gkaa208
  13. Takeda SN, Nakagawa R, Okazaki S, Hirano H, Kobayashi K, Kusakizako T, et al. 2021. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol. Cell. 81: 558-570.  https://doi.org/10.1016/j.molcel.2020.11.035
  14. Xiao R, Li Z, Wang S, Han R, Chang L. 2021. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Nucleic Acids Res. 49: 4120-4128.  https://doi.org/10.1093/nar/gkab179
  15. Lee HJ, Kim HJ, Lee SJ. 2023. Miniature CRISPR-Cas12f1-mediated single-nucleotide microbial genome editing using 3'-truncated sgRNA. CRISPR J. 6: 52-61. 
  16. Okano K, Sato Y, Hizume T, Honda K. 2021. Genome editing by miniature CRISPR/Cas12f1 enzyme in Escherichia coli. J. Biosci. Bioeng. 132: 120-124.  https://doi.org/10.1016/j.jbiosc.2021.04.009
  17. Wang Y, Sang S, Zhang X, Tao H, Guan Q, Liu C. 2022. Efficient genome editing by a miniature CRISPR-AsCas12f1 nuclease in Bacillus anthracis. Front. Bioeng. Biotechnol. 9: 825493. 
  18. Wang Y, Wang Y, Pan D, Yu H, Zhang Y, Chen W, et al. 2022. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40: 111418. 
  19. Guo R, Li Z, Li G, Zhang H, Zhang C, Huo X, et al. 2023. In vivo treatment of tyrosinaemia with hypercompact Cas12f1. Cell Discov. 9: 73. 
  20. Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, et al. 2022. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40: 94-102.  https://doi.org/10.1038/s41587-021-01009-z
  21. Kong X, Zhang H, Li G, Wang Z, Kong X, Wang L, et al. 2023. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14: 2046. 
  22. Hua H-M, Xu J-F, Huang X-S, Zimin AA, Wang W-F, Lu Y-H. 2024. Low-toxicity and high-efficiency Streptomyces genome editing tool based on the miniature type V-F CRISPR/Cas nuclease AsCas12f1. J. Agric. Food Chem. 72: 5358-5367.  https://doi.org/10.1021/acs.jafc.3c09101
  23. Lee HJ, Kim HJ, Lee SJ. 2020. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 30: 768-775.  https://doi.org/10.1101/gr.257493.119
  24. Lim SR, Lee HJ, Kim HJ, Lee SJ. 2023. Multiplex single-nucleotide microbial genome editing achieved by CRISPR-Cas9 using 5'-end-truncated sgRNAs. ACS Synth. Biol. 12: 2203-2207. 
  25. LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 93: 377-386.  https://doi.org/10.1111/tpj.13782
  26. Kurokawa S, Rahman H, Yamanaka N, Ishizaki C, Islam S, Aiso T, et al. 2021. A simple heat treatment increases SpCas9-mediated mutation efficiency in Arabidopsis. Plant Cell Physiol. 62: 1676-1686.  https://doi.org/10.1093/pcp/pcab123
  27. Blomme J, Develtere W, Kose A, Arraiza Ribera J, Brugmans C, Jaraba-Wallace J, et al. 2022. The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biol. 22: 142. 
  28. Xiang G, Zhang X, An C, Cheng C, Wang H. 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. J. Genet. Genom. 44: 199-205.  https://doi.org/10.1016/j.jgg.2017.03.004
  29. Guo Q, Mintier G, Ma-Edmonds M, Storton D, Wang X, Xiao X, et al. 2018. 'Cold shock' increases the frequency of homology directed repair gene editing in induced pluripotent stem cells. Sci. Rep. 8: 2080. 
  30. Maurissen TL, Woltjen K. 2020. Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nat. Commun. 11: 2876. 
  31. Kato S, Fukazawa T, Kubo T. 2021. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis. Biochem. Biophys. Res. Commun. 543: 50-55.  https://doi.org/10.1016/j.bbrc.2020.11.038
  32. Bhat D, Hauf S, Plessy C, Yokobayashi Y, Pigolotti S. 2022. Speed variations of bacterial replisomes. eLife 11: e75884. 
  33. Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, et al. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25-42.  https://doi.org/10.1016/j.femsre.2003.07.003
  34. Kim HJ, Oh SY, Lee SJ. 2020. Single-base genome editing in Corynebacterium glutamicum with the help of negative selection by target-mismatched CRISPR/Cpf1. J. Microbiol. Biotechnol. 30: 1583. 
  35. Lee HJ, Kim HJ, Lee SJ. 2021. Mismatch intolerance of 5'-truncated sgRNAs in CRISPR/Cas9 enables efficient microbial single-base genome editing. Int. J. Mol. Sci. 22: 6457. 
  36. Lee HJ, Kim HJ, Park Y-J, Lee SJ. 2022. Efficient single-nucleotide microbial genome editing achieved using CRISPR/Cpf1 with maximally 3'-end-truncated crRNAs. ACS Synth. Biol. 11: 2134-2143.  https://doi.org/10.1021/acssynbio.2c00054
  37. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279-284. https://doi.org/10.1038/nbt.2808