Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-00342735), and the Chung-Ang University research grant in 2023.
References
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. https://doi.org/10.1126/science.1138140
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821. https://doi.org/10.1126/science.1225829
- Lee HJ, Lee SJ. 2021. Advances in accurate microbial genome-editing CRISPR technologies. J. Microbiol. Biotechnol. 31: 903.
- Jeong SH, Lee HJ, Lee SJ. 2023. Recent advances in CRISPR-Cas technologies for synthetic biology. J. Microbiol. 61: 13-36.
- Knott GJ, Doudna JA. 2018. CRISPR-Cas guides the future of genetic engineering. Science 361: 866-869. https://doi.org/10.1126/science.aat5011
- Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. 2017. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8: 15179.
- Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho B-K. 2018. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth. Biol. 7: 1085-1094. https://doi.org/10.1021/acssynbio.7b00462
- Li W, Huang C, Chen J. 2022. The application of CRISPR/Cas mediated gene editing in synthetic biology: Challenges and optimizations. Front. Bioeng. Biotechnol. 10: 890155.
- Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191. https://doi.org/10.1038/nature14299
- Yan F, Wang W, Zhang J. 2019. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol. Toxicol 35: 489-492. https://doi.org/10.1007/s10565-019-09489-1
- Kumar N, Stanford W, De Solis C, Abraham ND, Dao T-MJ, Thaseen S, et al. 2018. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front. Mol. Neurosci. 11: 413.
- Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, Budre K, et al. 2020. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48: 5016-5023. https://doi.org/10.1093/nar/gkaa208
- Takeda SN, Nakagawa R, Okazaki S, Hirano H, Kobayashi K, Kusakizako T, et al. 2021. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol. Cell. 81: 558-570. https://doi.org/10.1016/j.molcel.2020.11.035
- Xiao R, Li Z, Wang S, Han R, Chang L. 2021. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Nucleic Acids Res. 49: 4120-4128. https://doi.org/10.1093/nar/gkab179
- Lee HJ, Kim HJ, Lee SJ. 2023. Miniature CRISPR-Cas12f1-mediated single-nucleotide microbial genome editing using 3'-truncated sgRNA. CRISPR J. 6: 52-61.
- Okano K, Sato Y, Hizume T, Honda K. 2021. Genome editing by miniature CRISPR/Cas12f1 enzyme in Escherichia coli. J. Biosci. Bioeng. 132: 120-124. https://doi.org/10.1016/j.jbiosc.2021.04.009
- Wang Y, Sang S, Zhang X, Tao H, Guan Q, Liu C. 2022. Efficient genome editing by a miniature CRISPR-AsCas12f1 nuclease in Bacillus anthracis. Front. Bioeng. Biotechnol. 9: 825493.
- Wang Y, Wang Y, Pan D, Yu H, Zhang Y, Chen W, et al. 2022. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40: 111418.
- Guo R, Li Z, Li G, Zhang H, Zhang C, Huo X, et al. 2023. In vivo treatment of tyrosinaemia with hypercompact Cas12f1. Cell Discov. 9: 73.
- Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, et al. 2022. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40: 94-102. https://doi.org/10.1038/s41587-021-01009-z
- Kong X, Zhang H, Li G, Wang Z, Kong X, Wang L, et al. 2023. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14: 2046.
- Hua H-M, Xu J-F, Huang X-S, Zimin AA, Wang W-F, Lu Y-H. 2024. Low-toxicity and high-efficiency Streptomyces genome editing tool based on the miniature type V-F CRISPR/Cas nuclease AsCas12f1. J. Agric. Food Chem. 72: 5358-5367. https://doi.org/10.1021/acs.jafc.3c09101
- Lee HJ, Kim HJ, Lee SJ. 2020. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 30: 768-775. https://doi.org/10.1101/gr.257493.119
- Lim SR, Lee HJ, Kim HJ, Lee SJ. 2023. Multiplex single-nucleotide microbial genome editing achieved by CRISPR-Cas9 using 5'-end-truncated sgRNAs. ACS Synth. Biol. 12: 2203-2207.
- LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 93: 377-386. https://doi.org/10.1111/tpj.13782
- Kurokawa S, Rahman H, Yamanaka N, Ishizaki C, Islam S, Aiso T, et al. 2021. A simple heat treatment increases SpCas9-mediated mutation efficiency in Arabidopsis. Plant Cell Physiol. 62: 1676-1686. https://doi.org/10.1093/pcp/pcab123
- Blomme J, Develtere W, Kose A, Arraiza Ribera J, Brugmans C, Jaraba-Wallace J, et al. 2022. The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biol. 22: 142.
- Xiang G, Zhang X, An C, Cheng C, Wang H. 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. J. Genet. Genom. 44: 199-205. https://doi.org/10.1016/j.jgg.2017.03.004
- Guo Q, Mintier G, Ma-Edmonds M, Storton D, Wang X, Xiao X, et al. 2018. 'Cold shock' increases the frequency of homology directed repair gene editing in induced pluripotent stem cells. Sci. Rep. 8: 2080.
- Maurissen TL, Woltjen K. 2020. Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nat. Commun. 11: 2876.
- Kato S, Fukazawa T, Kubo T. 2021. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis. Biochem. Biophys. Res. Commun. 543: 50-55. https://doi.org/10.1016/j.bbrc.2020.11.038
- Bhat D, Hauf S, Plessy C, Yokobayashi Y, Pigolotti S. 2022. Speed variations of bacterial replisomes. eLife 11: e75884.
- Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, et al. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25-42. https://doi.org/10.1016/j.femsre.2003.07.003
- Kim HJ, Oh SY, Lee SJ. 2020. Single-base genome editing in Corynebacterium glutamicum with the help of negative selection by target-mismatched CRISPR/Cpf1. J. Microbiol. Biotechnol. 30: 1583.
- Lee HJ, Kim HJ, Lee SJ. 2021. Mismatch intolerance of 5'-truncated sgRNAs in CRISPR/Cas9 enables efficient microbial single-base genome editing. Int. J. Mol. Sci. 22: 6457.
- Lee HJ, Kim HJ, Park Y-J, Lee SJ. 2022. Efficient single-nucleotide microbial genome editing achieved using CRISPR/Cpf1 with maximally 3'-end-truncated crRNAs. ACS Synth. Biol. 11: 2134-2143. https://doi.org/10.1021/acssynbio.2c00054
- Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279-284. https://doi.org/10.1038/nbt.2808