DOI QR코드

DOI QR Code

HPLC, NMR Based Characterization, Antioxidant and Anticancer Activities of Chemical Constituents from Therapeutically Active Fungal Endophytes

  • Waqas Hussain Shah (Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus ) ;
  • Wajiha Khan (Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus ) ;
  • Sobia Nisa (Department of Microbiology, The University of Haripur) ;
  • Michael H.J. Barfuss (Department of Botany and Biodiversity Research, University of Vienna) ;
  • Johann Schinnerl (Department of Botany and Biodiversity Research, University of Vienna) ;
  • Markus Bacher (Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU)) ;
  • Karin Valant-Vetschera (Department of Botany and Biodiversity Research, University of Vienna) ;
  • Ashraf Ali (Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur) ;
  • Hiba-Allah Nafidi (Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University) ;
  • Yousef A. Bin Jardan (Department of Pharmaceutics, College of Pharmacy, King Saud University) ;
  • John P. Giesy (Toxicology Centre, University of Saskatchewan)
  • Received : 2024.03.18
  • Accepted : 2024.04.29
  • Published : 2024.07.28

Abstract

Fungi generate different metabolites some of which are intrinsically bioactive and could therefore serve as templates for drug development. In the current study, six endophytic fungi namely Aspergillus flavus, Aspergillus tubigenesis, Aspergillus oryzae, Penicillium oxalicum, Aspergillus niger, and Aspergillus brasiliensis were isolated and identified from the medicinal plant, Silybum marianum. These endophytic fungi were identified through intra transcribed sequence (ITS) gene sequencing. The bioactive potentials of fungal extracts were investigated using several bioassays such as antibacterial activity by well-diffusion, MIC, MBC, anti-biofilm, antioxidant, and haemolysis. The Pseudomonas aeruginosa PAO1 was used to determine the antibiofilm activity. The ethyl acetate extract of Aspergillus flavus showed strong to moderate efficacy against Staphylococcus aureus, Escherichia coli, P. aeruginosa, and Bacillus spizizenii. Aspergillus flavus and Aspergillus brasiliensis exhibited significant antibiofilm activity with IC50 at 4.02 and 3.63 mg/ml, while A. flavus exhibited maximum antioxidant activity of 50.8%. Based on HPLC, LC-MS, and NMR experiments kojic acid (1) and carbamic acid (methylene-4, 1-phenylene) bis-dimethyl ester (2) were identified from A. flavus. Kojic acid exhibited DPPH free radical scavenging activity with an IC50 value of 99.3 ㎍/ml and moderate activity against ovarian teratocarcinoma (CH1), colon carcinoma (SW480), and non-small cell lung cancer (A549) cell lines. These findings suggest that endophytic fungi are able to produce promising bioactive compounds which deserve further investigation.

Keywords

Acknowledgement

We acknowledge the NMR Centre and MS Centre, Faculty of Chemistry, University of Vienna for measuring NMR and MS spectra. The authors would like to extend their sincere appreciation to the Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia for funding this work through the project number (RSP2024R457) and Higher education commission (HEC) of Pakistan for the financial support through IRSIP

References

  1. Bradu P, Biswas A, Nair C, Sreevalsakumar S, Patil M, Kannampuzha S, et al. 2023. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. 30: 124488-124519. 
  2. Chinemerem ND, Ugwu MC, Oliseloke AC, Al-Ouqaili MT, Chinedu IJ, Victor CU, et al. 2022. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. 36: e24655. 
  3. Pajares-Chamorro N, Hammer ND, Chatzistavrou X. 2022. Materials for restoring lost activity: old drugs for new bugs. Adv. Drug Deliv. Rev. 186: 114302. 
  4. Alsaadi A, Imam M, Alghamdi AA, Alghoribi MF. 2022. Towards promising antimicrobial alternatives: the future of bacteriophage research and development in Saudi Arabia. J. Infect. Public Health 15: 1355-1362. 
  5. Irfan M, Almotiri A, AlZeyadi ZA. 2022. Antimicrobial resistance and its drivers-A review. Antibiotics 11: 1362. 
  6. Prestinaci F, Pezzotti P, Pantosti A. 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob Health J. 109: 309-318. 
  7. Patangia DV, Ryan CA, Dempsey E, Stanton C, Ross RP. 2022. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. 30: 47-56. 
  8. Junaid M, Zainab SM, Xu N, Sadaf M, Malik RN, Wang, J. 2022. Antibiotics and antibiotic resistant genes in urban aquifers. Curr. Opin. Environ. Sci. Health 26: 100324. 
  9. Organization WH. 2008. World health statistics: World Health Organization. 
  10. Qadir SU, Raja V. 2021. Herbal medicine: old practice and modern perspectives. In Phytomedicine (pp. 149-180). Academic Press. 
  11. Yeshiwas Y, Tadele E, Tiruneh W. 2019. The dynamics of medicinal plants utilization practice nexus its health and economic role in Ethiopia: a review paper. Int. J. Biodivers. Conserv. 11: 31-47. 
  12. Prakash P, Radha KM, Kumari N, Prakash S, Rathour S, Mekhemar M. 2021. Therapeutic uses of wild plants by rural inhabitants of Maraog region in district Shimla, Himachal Pradesh, India. J. Hortic. 7: 343. 
  13. Subbulakshmi GK, Thalavaipandian A, Ramesh V, Rajendran A. 2012. Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa wall. and Thuja occidentalis L. Int. J. Life Sci. (IJALS) 4: 9-15. 
  14. Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. 2021. Antimicrobial resistance in biofilms: exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnol. Rep. 30: e00613. 
  15. Moloney MG. 2016. Natural products as a source for novel antibiotics. J. Pharm. Sci. 37: 689-701. 
  16. Agrawal S, Samanta S, Deshmukh SK. 2022. The antidiabetic potential of endophytic fungi: future prospects as therapeutic agents. Biotechnol. Appl. Biochem. 69: 1159-1165. 
  17. Digra S, Nonzom S. 2023. An insight into endophytic antimicrobial compounds: an updated analysis. Plant Biotechnol. Rep. 14: 1-31. 
  18. Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. 67: 491-502. 
  19. Rai N, Kumari KP, Verma A, Kamble SC, Mishra P, Barik S, et al. 2021. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 12: 139-159. 
  20. Singh A, Singh DK, Kharwar RN, White JF, Gond SK. 2021. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorganisms 9: 197. 
  21. Kumar A, Banjara RA, Aneshwari RK, Chandrawanshi NK. 2022. Microbial endophytes of medicinal plants as an emerging bioresource for novel therapeutic compounds. In Microb. Prod. (pp. 235-248). CRC Press. 
  22. Nisa S, Bibi Y, Masood S, Ali A, Alam S, Sabir M, et al. 2022. Isolation, characterization and anticancer activity of two bioactive compounds from Arisaema flavum (Forssk.) schott. Molecules 27: 7932. 
  23. Saleemi MA, Yahaya N, Zain NNM, Raoov M, Yong YK, Noor NS, et al. 2022. Antimicrobial and cytotoxic effects of Cannabinoids: an updated review with future perspectives and current challenges. J. Pharm. 15: 1228. 
  24. Naseef H, Al-Maharik N, Rabba AK, Sharifi-Rad M, Hawash M, Jaradat N. 2022. Phytochemical characterization and assessments of antimicrobial, cytotoxic and anti-inflammatory properties of Lavandula coronopifolia Poir. volatile oil from Palestine. Arab. J. Chem. 15: 104069. 
  25. Strobel H, Muessel W, Linnemann D, Zibold T, Hume DB, Pezze L, et al. 2014. Fisher information and entanglement of non-Gaussian spin states. J. Sci. 345: 424-427. 
  26. Eita AAB. 2022. Milk thistle (Silybum marianum (L.) Gaertn.): an overview about its pharmacology and medicinal uses with an emphasis on oral diseases. J. Oral Biosci. 64: 71-76. 
  27. Jafari S, Mousavi-Fard S, Rezaei Nejad A, Mumivand H, Sorkheh K, Nikoloudakis N, et al. 2022. Chitosan and titanium dioxide are more effective in improving seed yield and quality in nanoparticle compared to non-structured form: a case study in five milk thistle ecotypes (Silybum marianum (L.) Gaertn.). J. Agron. 12: 1827. 
  28. Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. 2020. Milk thistle (Silybum marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem. Toxicol. 43: 240-254. 
  29. Post-White J, LadasEJ, Kelly KM. 2007. Advances in the use of milk thistle (Silybum marianum). Integr. Cancer Ther. 6: 104-109. 
  30. Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, et al. 2015. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn.(milk thistle). J. Mycol. 6: 8-27. 
  31. Pishgouii FS, Lotfi, E. Sedaghati. 2023. Anti-AChE and anti-BuChE screening of the fermentation broth extracts from twelve Aspergillus isolates and GC-MS and molecular docking studies of the most active extracts. Appl. Biochem. Biotechnol. 195: 5199-5216. 1-18 
  32. Shubha J, Srinivas C. 2017. Diversity and extracellular enzymes of endophytic fungi associated with Cymbidium aloifolium L. Afr. J. Biotechnol. 16: 2248-2258. 
  33. Chen Q, Wang J, Gao Y, Gao X, Yan P. 2023. Optimization of fermentation conditions and product identification of a saponin-producing endophytic fungus. Microorganisms 11: 2331 
  34. Bora P, Devi NN. 2023. Exploration of the chemical constituents and its antioxidant, antibacterial activities of endophytic fungi isolated from the medicinal plant Dillenia indica. Arch. Microbiol. 205: 67. 
  35. Sarma B, Puzari KC, Dutta P. 2023. An alginate-based encapsulation enhances shelf life and bioactivity of the entomopathogenic fungus, Metarhizium anisopliae. Egypt. J. Biol. Pest Control 33: 69. 
  36. Chen Q, Wang J, Gao Y, Wang Z, Wang D, Gao X, et al. 2023. Fermentation, identification, and antioxidant activity of saponins produced by a wild ginseng endophytic fungus Umbelopsis dimorpha strain NSJG. Fermentation 10: 9. 
  37. Meccatti VM, Figueiredo-Godoi LMA, Pereira TC, de Lima PMN, Hasna AA, Senna LB, et al. 2022. The biocompatibility and antifungal effect of Rosmarinus officinalis against Candida albicans in Galleria mellonella model. Sci. Rep. 12: 15611. 
  38. Ramachandran R, et al. 2022. Effective and reliable protocol for DNA isolation from polyphenolic leaves and fruits of Garcinia gummi-gutta (L.) Robs. Proceedings of the National Academy of Sciences. India Section B: Biol. Sci. 92: 825-831. 
  39. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR protocols, a guide to methods and amplification. Academic Press, San Diego, pp. 315-322. 
  40. Werle E, Schneider C, Renner M, Volker M, Fiehn W. 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 22: 4354-4355. 
  41. Mailund T, et al. 2006. Recrafting the neighbor-joining method. BMC Bioinformatics 7: 1-8. 
  42. Srivathsan A, Meier R. 2012. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28: 190-194. 
  43. Nurunnabi, Tauhidur Rahman, Al-Majmaie, Shaymaa, Nakouti Ismini, Nahar Lutfun, et al. 2018.Antimicrobial activity of kojic acid from endophytic fungus Colletotrichum gloeosporioides isolated from Sonneratia apetala, a mangrove plant of the Sundarbans.Asian Pac. J. Trop. Med. 11: 350-354. 
  44. Kumar Sudhir, Stecher G, Li M, Knyaz C, Tamura Koichiro. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547. 
  45. Nisa S, Khan N, Shah W, Sabir M, Khan W, Bibi Y, et al. 2020. Identification and bioactivities of two endophytic fungi Fusarium fujikuroi and Aspergillus tubingensis from foliar parts of Debregeasia salicifolia. Arab. J. Sci. Eng. 45: 4477-4487. 
  46. Lin B, Huang G. 2022. Extraction, isolation, purification, derivatization, bioactivity, structure-activity relationship, and application of polysaccharides from white jellyfungus. Biotechnol. Bioeng. 119: 1359-1379. 
  47. Nisa H. 2018. Isolation and identification of endophytic fungi from Artemisia scoparia (Asteraceae).Int. J. Theorat. Appl. Sci. 10: 83-88. 
  48. Colombari B, Tagliazucchi D, Odorici A, Pericolini E, Foltran I, Pinetti D, et al. 2022. Pomegranate extract affects fungal biofilm production: consumption of phenolic compounds and alteration of fungal autoinducers release. Int. J. Environ. Res. Public Health 19: 14146. 
  49. Moharram AM, Zohri AA, Seddek NH. 2015. Production of kojic acid by endophytic fungi isolated from medicinal plant in Egypt. Int. Invent. J. Biochem. Bioinf. 3: 28-31. 
  50. Kusari S, Hertweck C, and Spiteller M. 2012. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem. Biol. 19: 792-798. 
  51. Alam B, L J, Ge Q, Khan MA, Gong J, Mehmood S, et al. 2021. Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa?. Front. Plant Sci. 12: 791033. 
  52. Bravo-Chaucanes CP, Vargas-Casanova Y, Chitiva-Chitiva LC, Ceballos-Garzon A, Modesti-Costa G, Parra-Giraldo CM. 2022. Evaluation of anti-Candida potential of Piper nigrum extract in inhibiting growth, yeast-hyphal transition, virulent enzymes, and biofilm formation. J. Fungi 8: 784. 
  53. Oncul S, Karakaya G, Dilsiz Aytemir M, Ercan AA. 2019. Kojic acid derivative promotes intrinsic apoptotic pathway of hepatocellular carcinoma cells without incurring drug resistance. Chem. Biol. Drug Des. 94: 2084-2093. 
  54. Annan NA, Butler IS, Titi HM, El-Lazeik Y, Jean-Claude BJ, Mostafa SI. 2019. DNA interaction and anticancer evaluation of new zinc (II), ruthenium (II), rhodium (III), palladium (II), silver (I) and platinum (II) complexes based on kojic acid; X-ray crystal structure of [Ag (ka)(PPh3)].H2O. Inorg. Chem. Acta 487: 433-447. 
  55. Ahmad N, Behbahani AA, B., Hojjati M, Vasiee A, Mehrnia MA. 2023. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci. Rep. 13: 14716. 
  56. Al-Dabbagh B, Elhaty, IA, Al Hrout AA, Al Sakkaf R, El-Awady R, Ashraf SS, et al. 2018. Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta. BMC Complement Altern. Med. 18: 240. 
  57. McGowan CH, Russell P. 1993. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 12: 75-85. 
  58. Kumari S, Badana AK, Malla R. 2018. Reactive oxygen species: a key constituent in cancer survival. Biomarker Insights 13: 1177271918755391. 
  59. Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24: R453-R462. 
  60. Cairns RA, Harris IS, Mak TW. 2011. Regulation of cancer cell metabolism. Nature Rev. Cancer 11: 85-95. 
  61. Zheng R, Li S, Zhang X, Zhao C. 2021. Biological activities of some new secondary metabolites isolated from endophytic fungi: a review study. Int. J. Mol. Sci. 22: 959.