DOI QR코드

DOI QR Code

The In Vitro Promoting Angiogenesis Roles of Exosomes Derived from the Protoscoleces of Echinococcus multilocularis

  • Wenjing Zhou (Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University) ;
  • Xiang Li (Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University) ;
  • Xinqi Yang (Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University) ;
  • Bin Ye (Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University)
  • Received : 2024.03.21
  • Accepted : 2024.05.13
  • Published : 2024.07.28

Abstract

Alveolar echinococcosis (AE) is a persistent parasite condition that causes the formation of tumorlike growths. It is a challenge to treat the disease. These growths need neovascularization to get their oxygen and nutrients, and the disease is prolonged and severe. Considerable research has been conducted on exosomes and their interactions with Echinococcus multilocularis in the context of immunological evasion by the host. However, the extent of their involvement in angiogenesis needs to be conducted. The primary objective of this investigation was to preliminarily explore the effect of exosomes produced from E. multilocularis protoscoleces (PSC-exo) on angiogenesis, to elucidate the mechanism of their roles in the regulation of the downstream pathway of VEGFA activation, and to provide ideas for the development of novel treatments for AE. The study evaluated the impact of PSC-exo increases proliferation, migration, invasion, and tube formation of HUVECs at concentrations of up to 50 ㎍/ml. In addition, the study sought to validate the findings in vivo. This effect involved increased VEGFA expression at gene and protein levels and AKT/mTOR pathway activation. PSC-exo are crucial in promoting angiogenesis through VEGFA upregulation and AKT/mTOR signaling. This research contributes to our knowledge of neovascularization in AE.

Keywords

Acknowledgement

The authors would like to thank the Research Center for Molecular Medicine and Tumor at Chongqing Medical University for providing laboratory equipment. This work was partially supported by the National Natural Science Foundation of China (grant no. 81672045).

References

  1. Casulli A, Barth TFE, Tamarozzi F. 2019. Echinococcus multilocularis. Trends Parasitol. 35: 738-739.  https://doi.org/10.1016/j.pt.2019.05.005
  2. Autier B, Gottstein B, Millon L, Ramharter M, Gruener B, Bresson-Hadni S, et al. 2023. Alveolar echinococcosis in immunocompromised hosts. Clin. Microbiol. Infect. 29: 593-599. 
  3. Pegtel DM, Gould SJ. 2019. Exosomes. Annu. Rev. Biochem. 88: 487-514.  https://doi.org/10.1146/annurev-biochem-013118-111902
  4. Mathieu M, Martin-Jaular L, Lavieu G, Thery C. 2019. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21: 9-17.  https://doi.org/10.1038/s41556-018-0250-9
  5. Menon R, Dixon CL, Sheller-Miller S, Fortunato SJ, Saade GR, Palma C, et al. 2019. Quantitative proteomics by SWATH-MS of maternal plasma exosomes determine pathways associated with term and preterm birth. Endocrinology 160: 639-650.  https://doi.org/10.1210/en.2018-00820
  6. Guay C, Regazzi R. 2017. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab. 19: 137-146.  https://doi.org/10.1111/dom.13027
  7. Robbins PD, Morelli AE. 2014. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14: 195-208.  https://doi.org/10.1038/nri3622
  8. Sisquella X, Ofir-Birin Y, Pimentel MA, Cheng L, Abou Karam P, Sampaio NG, et al. 2017. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 8: 1985. 
  9. Han B, Zhang H, Tian R, Liu H, Wang Z, Wang Z, et al. 2022. Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling. Theranostics 12: 4127-4146.  https://doi.org/10.7150/thno.72404
  10. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. 2011. Exosomes from plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One 6: e26588. 
  11. Mantel P-Y, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, et al. 2013. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13: 521-534.  https://doi.org/10.1016/j.chom.2013.04.009
  12. Soto-Serna LE, Diupotex M, Zamora-Chimal J, Ruiz-Remigio A, Delgado-Dominguez J, Cervantes-Sarabia RB, et al. 2020. Leishmania mexicana: novel insights of immune modulation through amastigote exosomes. J. Immunol. Res. 2020: 8894549. 
  13. Li Y, Xiu F, Mou Z, Xue Z, Du H, Zhou C, et al. 2018. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomed 13: 1157-1168.  https://doi.org/10.2217/nnm-2018-0035
  14. Ramirez-Flores CJ, Cruz-Miron R, Mondragon-Castelan ME, Gonzalez-Pozos S, Rios-Castro E, Mondragon-Flores R. 2019. Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii. J. Proteomics 208: 103490. 
  15. Pope SM, Lasser C. 2013. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J. Extracell. Vesicles 2: 22484. 
  16. Wang L, Li Z, Shen J, Liu Z, Liang J, Wu X, et al. 2015. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune- activity of macrophage. Parasitol. Res. 114: 1865-1873.  https://doi.org/10.1007/s00436-015-4373-7
  17. La X, Zhang F, Li Y, Li J, Guo Y, Zhao H, et al. 2015. Upregulation of PD-1 on CD4+CD25+T cells is associated with immunosuppression in liver of mice infected with Echinococcus multilocularis. Int. Immunopharmacol. 26: 357-366.  https://doi.org/10.1016/j.intimp.2015.04.013
  18. Zheng Y, Guo X, Su M, Guo A, Ding J, Yang J, et al. 2017. Regulatory effects of Echinococcus multilocularis extracellular vesicles on RAW264.7 macrophages. Vet. Parasitol. 235: 29-36.  https://doi.org/10.1016/j.vetpar.2017.01.012
  19. Hillenbrand A, Gruener B, Kratzer W, Kern P, Graeter T, Barth TF, et al. 2017. Impact of safe distance on long-term outcome after surgical therapy of alveolar echinococcosis. World J. Surg. 41: 1012-1018.  https://doi.org/10.1007/s00268-016-3813-6
  20. Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, et al. 2021. Monotherapy and combination therapy using anti-angiogenic nanoagents to fight cancer. Adv. Mater. 33: 2005155. 
  21. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.  https://doi.org/10.1006/meth.2001.1262
  22. Dennis RD, Schubert U, Bauer C. 2011. Angiogenesis and parasitic helminth-associated neovascularization. Parasitology 138: 426-439.  https://doi.org/10.1017/S0031182010001642
  23. Li R, Wang Y, Zhang X, Feng M, Ma J, Li J, et al. 2019. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol. Cancer 18: 18. 
  24. Chen X, Zhang S, Du K, Zheng N, Liu Y, Chen H, et al. 2021. Gastric cancer-secreted exosomal X26nt increases angiogenesis and vascular permeability by targeting VE-cadherin. Cancer Sci. 112: 1839-1852.  https://doi.org/10.1111/cas.14740
  25. Chen C, Liu Y, Liu L, Si C, Xu Y, Wu X, et al. 2023. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating Akt signaling pathway. J. Exp. Clin. Cancer Res. 42: 46. 
  26. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. 2014. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25: 501-515.  https://doi.org/10.1016/j.ccr.2014.03.007
  27. Jiang H, Wang X, Guo L, Tan X, Gui X, Liao Z, et al. 2023. Effect of sunitinib against Echinococcus multilocularis through inhibition of VEGFA-induced angiogenesis. Parasit. Vectors 16: 407. 
  28. Liu C, Cao J, Zhang H, Field MC, Yin J. 2023. Extracellular vesicles secreted by Echinococcus multilocularis: important players in angiogenesis promotion. Microbes Infect. 25: 105147. 
  29. Claesson-Welsh L, Welsh M. 2013. VEGFA and tumour angiogenesis. J. Intern. Med. 273: 114-127.  https://doi.org/10.1111/joim.12019
  30. Chan Y, Zhang H, Liu P, Tsao S, Lung ML, Mak N, et al. 2015. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int. J. Cancer 137: 1830-1841.  https://doi.org/10.1002/ijc.29562
  31. Skog J, Wurdinger T, Van Rijn S, Meijer DH, Gainche L, Curry WT, et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10: 1470-1476.  https://doi.org/10.1038/ncb1800
  32. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. 2013. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem. 288: 10849-10859.  https://doi.org/10.1074/jbc.M112.446831
  33. Lang H-L, Hu G-W, Chen Y, Liu Y, Tu W, Lu Y-M, et al. 2017. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur. Rev. Med. Pharmacol. Sci. 21: 959-972. 
  34. Holmes DI, Zachary I. 2005. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 6: 209. 
  35. He L, Feng A, Guo H, Huang H, Deng Q, Zhao E, et al. 2022. LRG1 mediated by ATF3 promotes growth and angiogenesis of gastric cancer by regulating the SRC/STAT3/VEGFA pathway. Gastric Cancer 25: 527-541.  https://doi.org/10.1007/s10120-022-01279-9
  36. Chen W, Shen Z, Cai S, Chen L, Wang D. 2021. FGF21 promotes wound healing of rat brain microvascular endothelial cells through facilitating TNF-α-mediated VEGFA and ERK1/2 signaling pathway. Adv. Clin. Exp. Med. 30: 711-720.  https://doi.org/10.17219/acem/133494
  37. Zhou T, Liu L, Lan H, Fang D. 2023. Effects of LAIR-1 on hepatocellular carcinoma cell proliferation and invasion via PI3K-AKT-mTOR pathway regulation. Immun. Inflamm. Dis. 11: e982. 
  38. Wu J, Zhao X, Sun Q, Jiang Y, Zhang W, Luo J, et al. 2020. Synergic effect of PD-1 blockade and endostar on the PI3K/AKT/mTOR-mediated autophagy and angiogenesis in Lewis lung carcinoma mouse model. Biomed. Pharmacother. 125: 109746. 
  39. Yang L, Dong Z, Li S, Chen T. 2023. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Milano) 15: 2920-2936. 
  40. Conciatori F, Bazzichetto C, Falcone I, Pilotto S, Bria E, Cognetti F, et al. 2018. Role of mTOR signaling in tumor microenvironment: an overview. Int. J. Mol. Sci. 19: 2453. 
  41. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG. 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4: 147-158.  https://doi.org/10.1016/S1535-6108(03)00187-9
  42. Chen X, Zeng K, Xu M, Liu X, Hu X, Xu T, et al. 2019. P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2. Cell Death Dis. 10: 131. 
  43. Sherwood LM, Parris EE, Folkman J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285: 1182-1186.  https://doi.org/10.1056/NEJM197111182852108
  44. Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, et al. 2010. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 28: 453-459. https://doi.org/10.1200/JCO.2009.24.8252