DOI QR코드

DOI QR Code

Thermostable Bacterial Collagenolytic Proteases: A Review

  • Kui Zhang (College of Life Sciences and Technology, Longdong University) ;
  • Yapeng Han (College of Life Sciences and Technology, Longdong University)
  • Received : 2024.04.29
  • Accepted : 2024.05.28
  • Published : 2024.07.28

Abstract

Collagenolytic proteases are widely used in the food, medical, pharmaceutical, cosmetic, and textile industries. Mesophilic collagenases exhibit collagenolytic activity under physiological conditions, but have limitations in efficiently degrading collagen-rich wastes, such as collagen from fish scales, at high temperatures due to their poor thermostability. Bacterial collagenolytic proteases are members of various proteinase families, including the bacterial collagenolytic metalloproteinase M9 and the bacterial collagenolytic serine proteinase families S1, S8, and S53. Notably, the C-terminal domains of collagenolytic proteases, such as the pre-peptidase C-terminal domain, the polycystic kidney disease-like domain, the collagen-binding domain, the proprotein convertase domain, and the β-jelly roll domain, exhibit collagen-binding or -swelling activity. These activities can induce conformational changes in collagen or the enzyme active sites, thereby enhancing the collagen-degrading efficiency. In addition, thermostable bacterial collagenolytic proteases can function at high temperatures, which increases their degradation efficiency since heat-denatured collagen is more susceptible to proteolysis and minimizes the risk of microbial contamination. To date, only a few thermophile-derived collagenolytic proteases have been characterized. TSS, a thermostable and halotolerant subtilisin-like serine collagenolytic protease, exhibits high collagenolytic activity at 60℃. In this review, we present and summarize the current research on A) the classification and nomenclature of thermostable and mesophilic collagenolytic proteases derived from diverse microorganisms, and B) the functional roles of their C-terminal domains. Furthermore, we analyze the cleavage specificity of the thermostable collagenolytic proteases within each family and comprehensively discuss the thermostable collagenolytic protease TSS.

Keywords

Acknowledgement

This work was financially supported by the Doctoral Fund Project of Longdong University (Grant no. XYBYZK2215).

References

  1. Cui N, Hu M, Khalil RA. 2017. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. 147: 1-73. 
  2. Kadler KE, Baldock C, Bella J, Boot-Handford RP. 2007. Collagens at a glance. J. Cell Sci. 120: 1955-1958. 
  3. Gordon MK, Hahn RA. 2010. Collagens. Cell Tissue Res. 339: 247-257. 
  4. Ricard-Blum S. 2011. The collagen family. Cold Spring Harbor Perspect. Biol. 3: a004978. 
  5. Shekhter AB, Balakireva AV, Kuznetsova NV, Vukolova MN, Litvitsky PF, Zamyatnin AA, Jr. 2019. Collagenolytic enzymes and their applications in biomedicine. Curr. Med. Chem. 26: 487-505. 
  6. Bella J. 2016. Collagen structure: new tricks from a very old dog. Biochem. J. 473: 1001-1025. 
  7. Zhang YZ, Ran LY, Li CY, Chen XL. 2015. Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Appl. Environ. Microbiol. 81: 6098-6107. 
  8. Shoulders MD, Raines RT. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78: 929-958. 
  9. Harrington DJ. 1996. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect. Immun. 64: 1885-1891. 
  10. Bond MD, Van Wart HE. 1984. Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry 23: 3085-3091. 
  11. Matsushita O, Jung CM, Katayama S, Minami J, Takahashi Y, Okabe A. 1999. Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J. Bacteriol. 181: 923-933. 
  12. Duarte AS, Correia A, Esteves AC. 2016. Bacterial collagenases - A review. Crit. Rev. Microbiol. 42: 106-126. 
  13. Zhang YZ, Ran LY, Li CY, Chen XL. 2015. Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Appl. Environ. Microb. 81: 6098-6107. 
  14. Berti PJ, Storer AC. 1995. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246: 273-283. 
  15. Wilkesman J. 2017. Cysteine protease zymography: Brief review. Methods Mol. Biol. 1626: 25-31. 
  16. Elleuche S, Schafers C, Blank S, Schroder C, Antranikian G. 2015. Exploration of extremophiles for high temperature biotechnological processes. Curr. Opin. Microbiol. 25: 113-119. 
  17. Zhang K, Huang Q, Li Y, Liu L, Tang XF, Tang B. 2022. Maturation process and characterization of a novel thermostable and halotolerant subtilisin-like protease with high collagenolytic activity but low gelatinolytic activity. Appl. Environ. Microbiol. 88: e0218421. 
  18. Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K. 2006. Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J. Biosci. Bioeng. 102: 73-81. 
  19. Wang Y, Su HN, Cao HY, Liu SM, Liu SC, Zhang X, et al. 2022. Mechanistic insight into the fragmentation of type I collagen fibers into peptides and amino acids by a Vibrio collagenase. Appl. Environ. Microbiol. 88: e0167721. 
  20. Huang J, Wu C, Liu D, Yang X, Wu R, Zhang J, et al. 2017. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications. J. Appl. Microbiol. 122: 12-22. 
  21. Nonaka T, Fujihashi M, Kita A, Saeki K, Ito S, Horikoshi K, Miki K. 2004. The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal β-barrel domain. J. Biol. Chem. 279: 47344-47351. 
  22. Philominathan ST, Koide T, Hamada K, Yasui H, Seifert S, Matsushita O, Sakon J. 2009. Unidirectional binding of clostridial collagenase to triple helical substrates. J. Biol. Chem. 284: 10868-10876. 
  23. Ohbayashi N, Yamagata N, Goto M, Watanabe K, Yamagata Y, Murayama K. 2012. Enhancement of the structural stability of full-length clostridial collagenase by calcium ions. Appl. Environ. Microbiol. 78: 5839-5844. 
  24. Eckhard U, Schonauer E, Brandstetter H. 2013. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J. Biol. Chem. 288: 20184-20194. 
  25. Takeuchi H, Shibano Y, Morihara K, Fukushima J, Inami S, Keil B, et al. 1992. Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem. J. 281: 703-708. 
  26. Kim SK, Yang JY, Cha J. 2002. Cloning and sequence analysis of a novel metalloprotease gene from Vibrio parahaemolyticus 04.Gene 283: 277-286. 
  27. Lee JH, Ahn SH, Lee EM, Jeong SH, Kim YO, Lee SJ, Kong IS. 2005. The FAXWXXT motif in the carboxyl terminus of Vibrio mimicus metalloprotease is involved in binding to collagen. FEBS Lett. 579: 2507-2513. 
  28. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. 2012. The Pfam protein families database. Nucleic Acids Res. 40: D290-D301. 
  29. Rawlings ND, Barrett AJ, Bateman A. 2010. MEROPS: the peptidase database. Nucleic Acids Res. 38: D227-233. 
  30. Matsushita O, Yoshihara K, Katayama S, Minami J, Okabe A. 1994. Purification and characterization of Clostridium perfringens 120- kilodalton collagenase and nucleotide sequence of the corresponding gene. J. Bacteriol. 176: 149-156. 
  31. Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, et al. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100: 1316-1321. 
  32. Donahue TR, Hiatt JR, Busuttil RW. 2006. Collagenase and surgical disease. Hernia 10: 478-485. 
  33. Eckhard U, Schonauer E, Nuss D, Brandstetter H. 2011. Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis. Nat. Struct. Mol. Biol. 18: 1109-1114. 
  34. Maclennan JD, Mandl I, Howes EL. 1953. Bacterial digestion of collagen. J. Clin. Invest. 32: 1317-1322. 
  35. Breite AG, McCarthy RC, Dwulet FE. 2011. Characterization and functional assessment of Clostridium histolyticum class I (C1) collagenases and the synergistic degradation of native collagen in enzyme mixtures containing class II (C2) collagenase. Transplant. Proc. 43: 3171-3175. 
  36. French MF, Mookhtiar KA, Van Wart HE. 1987. Limited proteolysis of type I collagen at hyperreactive sites by class I and II Clostridium histolyticum collagenases: complementary digestion patterns. Biochemistry 26: 681-687. 
  37. Lee CY, Su SC, Liaw RB. 1995. Molecular analysis of an extracellular protease gene from Vibrio parahaemolyticus. Microbiology (Reading, England) 141: 2569-2576. 
  38. Lee JH, Kim GT, Lee JY, Jun HK, Yu JH, Kong IS. 1998. Isolation and sequence analysis of metalloprotease gene from Vibrio mimicus. Biochim. Biophys. Acta 1384: 1-6. 
  39. Luan X, Chen J, Zhang XH, Li Y, Hu G. 2007. Expression and characterization of a metalloprotease from a Vibrio parahaemolyticus isolate. Can. J. Microbiol. 53: 1168-1173. 
  40. French MF, Bhown A, Van Wart HE. 1992. Identification of Clostridium histolyticum collagenase hyperreactive sites in type I, II, and III collagens: lack of correlation with local triple helical stability. J. Protein Chem. 11: 83-97. 
  41. Lecroisey A, Keil B. 1979. Differences in the degradation of native collagen by two microbial collagenases. Biochem. J. 179: 53-58. 
  42. Ueshima S, Yasumoto M, Kitagawa Y, Akazawa K, Takita T, Tanaka K, et al. 2023. Insights into the catalytic mechanism of collagenase through structural and mutational analyses. FEBS Lett. 597: 2473-2483. 
  43. Wang Y, Wang P, Cao HY, Ding HT, Su HN, Liu SC, et al. 2022. Structure of collagenase VhaC provides insight into the mechanism of bacterial collagenolysis. Nat. Commun. 13: 566. 
  44. Hoa Bach TM, Pham TH, Dinh TS, Takagi H. 2020. Characterization of collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3. Biosci. Biotechnol. Biochem. 84: 2293-2302. 
  45. Ramirez-Rico G, Martinez-Castillo M, Ruiz-Mazon L, Meneses-Romero EP, Palacios JAF, Diaz-Aparicio E, et al. 2024. Identification, biochemical characterization, and in vivo detection of a Zn-metalloprotease with collagenase activity from A2. Int. J. Mol. Sci. 25: 1289. 
  46. Uesugi Y, Arima J, Usuki H, Iwabuchi M, Hatanaka T. 2008. Two bacterial collagenolytic serine proteases have different topological specificities. Bba-Proteins Proteom. 1784: 716-726. 
  47. Wlodawer A, Li M, Gustchina A, Oyama H, Dunn BM, Oda K. 2003. Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases. Acta Biochim. Polonica 50: 81-102. 
  48. Rawlings ND, Barrett AJ, Bateman A. 2010. MEROPS: the peptidase database. Nucleic Acids Res. 38: D227-233. 
  49. Wlodawer A, Li M, Gustchina A, Oyama H, Dunn BM, Oda K. 2003. Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases. Acta Biochim. Pol. 50: 81-102. 
  50. Rawlings ND, Salvesen G. 2013. Handbook of proteolytic enzymes, pp. 2491-2505. Third edition. / Ed. Elsevier/AP, Amsterdam. 
  51. Nakayama T, Tsuruoka N, Akai M, Nishino T. 2000. Thermostable collagenolytic activity of a novel thermophilic isolate, Bacillus sp. strain NTAP-1. J. Biosci. Bioeng. 89: 612-614. 
  52. Tsuruoka N, Isono Y, Shida O, Hemmi H, Nakayama T, Nishino T. 2003. Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int. J. Syst. Evol. Microbiol. 53: 1081-1084. 
  53. Tsuruoka N, Nakayama T, Ashida M, Hemmi H, Nakao M, Minakata H, et al. 2003. Collagenolytic serine-carboxyl proteinase from Alicyclobacillus sendaiensis strain NTAP-1: purification, characterization, gene cloning, and heterologous expression. Appl. Environ. Microbiol. 69: 162-169. 
  54. Nakayama T, Tsuruoka N, Akai M, Nishino T. 2000. Thermostable collagenolytic activity of a novel thermophilic isolate, Bacillus sp. strain NTAP-1. J. Biosci. Bioeng. 89: 612-614. 
  55. Wlodawer A, Li M, Gustchina A, Tsuruoka N, Ashida M, Minakata H, et al. 2004. Crystallographic and biochemical investigations of kumamolisin-As, a serine-carboxyl peptidase with collagenase activity. J. Biol. Chem. 279: 21500-21510. 
  56. Leikina E, Mertts MV, Kuznetsova N, Leikin S. 2002. Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. USA 99: 1314-1318. 
  57. Catara G, Fiume I, Iuliano F, Maria G, Ruggiero G, Palmieri G, et al. 2006. A new kumamolisin-like protease from :: an enzyme active under extreme acidic conditions. Biocatal. Biotransfor. 24: 358-370. 
  58. Okamoto M, Yonejima Y, Tsujimoto Y, Suzuki Y, Watanabe K. 2001. A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl. Microbiol. Biotechnol. 57: 103-108. 
  59. Itoi Y, Horinaka M, Tsujimoto Y, Matsui H, Watanabe K. 2006. Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile Geobacillus collagenovorans MO-1. J. Bacteriol. 188: 6572-6579. 
  60. Kurata A, Uchimura K, Kobayashi T, Horikoshi K. 2010. Collagenolytic subtilisin-like protease from the deep-sea bacterium Alkalimonas collagenimarina AC40T. Appl. Microbiol. Biotechnol. 86: 589-598. 
  61. Petrova DH, Shishkov SA, Vlahov SS. 2006. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J. Basic Microbiol. 46: 275-285. 
  62. Zhao GY, Chen XL, Zhao HL, Xie BB, Zhou BC, Zhang YZ. 2008. Hydrolysis of insoluble collagen by deseasin MCP-01 from deepsea Pseudoalteromonas sp. SM9913: collagenolytic characters, collagen-binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. J. Biol. Chem. 283: 36100-36107. 
  63. Wang YK, Zhao GY, Li Y, Chen XL, Xie BB, Su HN, et al. 2010. Mechanistic insight into the function of the C-terminal PKD domain of the collagenolytic serine protease deseasin MCP-01 from deep sea Pseudoalteromonas sp. SM9913: binding of the PKD domain to collagen results in collagen swelling but does not unwind the collagen triple helix. J. Biol. Chem. 285: 14285-14291. 
  64. Ran LY, Su HN, Zhao GY, Gao X, Zhou MY, Wang P, et al. 2013. Structural and mechanistic insights into collagen degradation by a bacterial collagenolytic serine protease in the subtilisin family. Mol. Microbiol. 90: 997-1010. 
  65. Ran LY, Su HN, Zhou MY, Wang L, Chen XL, Xie BB, et al. 2014. Characterization of a novel subtilisin-like protease myroicolsin from deep sea bacterium Myroides profundi D25 and molecular insight into its collagenolytic mechanism. J. Biol. Chem. 289: 6041-6053. 
  66. Chen XL, Xie BB, Lu JT, He HL, Zhang Y. 2007. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913: catalytic and structural properties of deseasin MCP-01. Microbiology (Reading) 153: 2116-2125. 
  67. Zhao GY, Chen XL, Zhao HL, Xie BB, Zhou BC, Zhang YZ. 2008. Hydrolysis of insoluble collagen by deseasin MCP-01 from deep-sea Pseudoalteromonas sp. SM9913: collagenolytic characters, collagen-binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation J. Biol. Chem. 283: 36100-36107. 
  68. Ran LY, Su HN, Zhao GY, Gao X, Zhou MY, Wang P, et al. 2013. Structural and mechanistic insights into collagen degradation by a bacterial collagenolytic serine protease in the subtilisin family. Mol. Microbiol. 90: 997-1010. 
  69. Muhammed NS, Hussin N, Lim AS, Jonet MA, Mohamad SE, Jamaluddin H. 2021. Recombinant production and characterization of an extracellular subtilisin-like serine protease from of fermented food origin. Protein J. 40: 419-435. 
  70. Ding YD, Yang Y, Ren YX, Xia JY, Liu F, Li Y, et al. 2020. Extracellular production, characterization, and engineering of a polyextremotolerant subtilisin-like protease from feather-degrading strain CDF. Front . Microbiol. 11: 605771. 
  71. Huang J, Wu R, Liu D, Liao B, Lei M, Wang M, et al. 2019. Mechanistic insight into the binding and swelling functions of prepeptidase C-terminal (PPC) domains from various bacterial proteases. Appl. Environ. Microbiol. 85: e00611-19. 
  72. Leikina E, Mertts MV, Kuznetsova N, Leikin S. 2002. Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. USA 99: 1314-1318. 
  73. Foophow T, Tanaka S, Angkawidjaja C, Koga Y, Takano K, Kanaya S. 2010. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability. J. Mol. Biol. 400: 865-877. 
  74. Shekhter AB, Balakireva AV, Kuznetsova NV, Vukolova MN, Litvitsky PF, Zamyatnin AA. 2019. Collagenolytic enzymes and their applications in biomedicine. Curr. Med. Chem. 26: 487-505. 
  75. Myers LK, Tang B, Rosloniec EF, Stuart JM, Chiang TM, Kang AH. 1998. Characterization of a peptide analog of a determinant of type II collagen that suppresses collagen-induced arthritis. J. Immunol. 161: 3589-3595. 
  76. Aumiller WM, Jr., Davis BW, Hashemian N, Maranas C, Armaou A, Keating CD. 2014. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system. J. Phys. Chem B. 118: 2506-2517. 
  77. Ku G, Kronenberg M, Peacock DJ, Tempst P, Banquerigo ML, Braun BS, et al. 1993. Prevention of experimental autoimmune arthritis with a peptide fragment of type II collagen. Eur. J. Immunol. 23: 591-599. 
  78. Miller EJ, Gay S. 1987. The collagens: an overview and update. Methods Enzymol. 144: 3-41. 
  79. Watanabe K. 2004. Collagenolytic proteases from bacteria. Appl. Microbiol. Biotechnol. 63: 520-526. 
  80. Nitulescu G, Mihai DP, Zanfirescu A, Stan MS, Gradinaru D, Nitulescu GM. 2022. Discovery of new microbial collagenase inhibitors. Life 12: 2114. 
  81. Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. 2023. Collagen derived from fish industry waste: Progresses and challenges. Polymers (Basel) 15: 344. 
  82. Okamoto M, Yonejima Y, Tsujimoto Y, Suzuki Y, Watanabe K. 2001. A thermostable collagenolytic protease with a very large molecular mass produced by Thermophilic sp. strain MO-1. Appl. Microbiol. Biotechnol. 57: 103-108. 
  83. Kurata A, Uchimura K, Kobayashi T, Horikoshi K. 2010. Collagenolytic subtilisin-like protease from the deep-sea bacterium Alkalimonas collagenimarina AC40. Appl. Microbiol. Biotechnol. 86: 589-598. 
  84. Petrova DH, Shishkov SA, Vlahov SS. 2006. Novel thermostable serine collagenase from sp 21E:: purification and some properties. J. Basic Microb. 46: 275-285. 
  85. Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, et al. 2010. Extremely acidic beta-1,4-glucanase, CelA4, from thermoacidophilic Alicyclobacillus sp. A4 with high protease resistance and potential as a pig feed additive. J. Agric. Food Chem. 58: 1970-1975. 
  86. Eckhard U, Schonauer E, Ducka P, Briza P, Nuss D, Brandstetter H. 2009. Biochemical characterization of the catalytic domains of three different clostridial collagenases. Biol. Chem. 390: 11-18. 
  87. Santra M, Sharma M, Luthra-Guptasarma M. 2021. Studies on Vibrio mimicus derived collagenase variants providing insights into critical role(s) played by the FAXWXXT motifs in its collagen-binding domain. Enzyme Microb. Technol. 147: 109779. 
  88. Lee JH, Ahn SH, Lee EM, Kim YO, Lee SJ, Kong IS. 2003. Characterization of the enzyme activity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions. FEMS Microbiol. Lett. 223: 293-300. 
  89. Tanaka K, Okitsu T, Teramura N, Iijima K, Hayashida O, Teramae H, Hattori S. 2020. Recombinant collagenase from Grimontia hollisae as a tissue dissociation enzyme for isolating primary cells. Sci. Rep. 10: 3927. 
  90. Bhuimbar MV, Jalkute CB, Bhagwat PK, Dandge PB. 2024. Purification, characterization and application of collagenolytic protease from Bacillus subtilis strain MPK. J. Biosci. Bioeng. 38: 21-28. 
  91. Serwanja J, Wieland AC, Haubenhofer A, Brandstetter H, Schonauer E. 2024. A conserved strategy to attack collagen: The activator domain in bacterial collagenases unwinds triple-helical collagen. Proc. Natl. Acad. Sci. USA 121: e2321002121. 
  92. Li HJ, Tang BL, Shao X, Liu BX, Zheng XY, Han XX, et al. 2016. Characterization of a new S8 serine protease from marine sedimentary Photobacterium sp. A5-7 and the function of its protease-associated domain. Front. Microbiol. 7: 2016. 
  93. Itoi Y, Horinaka M, Tsujimoto Y, Matsui H, Watanabe K. 2006. Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile MO-1. J. Bacteriol. 188: 6572-6579. 
  94. Teramura N, Tanaka K, Iijima K, Hayashida O, Suzuki K, Hattori S, et al. 2011. Cloning of a novel collagenase gene from the gram-negative bacterium Grimontia (Vibrio) hollisae 1706B and its efficient expression in Brevibacillus choshinensis. J. Bacteriol. 193: 3049-3056.