DOI QR코드

DOI QR Code

연안 부영양화 평가: 한국 진해만의 최근 영양 상태(2020-2023)

Evaluating Coastal Eutrophication: Trophic State Trends in Jinhae Bay, South Korea (2020-2023)

  • 김관우 (국립수산과학원 해양환경연구과) ;
  • 나수진 (국립수산과학원 해양환경연구과) ;
  • 강종완 (국립수산과학원 해양환경연구과) ;
  • 이수미 (국립수산과학원 해양환경연구과) ;
  • 최민규 (국립수산과학원 해양환경연구과) ;
  • 임재현 (국립수산과학원 해양환경연구과)
  • Kwanwoo Kim (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Sujin Na (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Jongwan Kang (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Su-mi Lee (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Minkyu Choi (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Jae-Hyun Lim (Marine Environment Research Division, National Institute of Fisheries Science)
  • 투고 : 2024.05.29
  • 심사 : 2024.08.08
  • 발행 : 2024.08.31

초록

To evaluate the recent trophic state of Jinhae Bay, field campaigns were conducted in June and August during 2020-2023, measuring environmental factors in both the surface and bottom layers. Temperature differences between layers were greater in August than in June. Surface salinity was decreased in August, probably due to runoff, while bottom salinity remained stable. Dissolved oxygen levels showed a more pronounced stratification in August, leading to hypoxic conditions in the bottom layer. Chemical oxygen demand (COD) was higher at the surface, with rainfall contributing to elevated levels. The eutrophication index (EI) was consistently higher at the bottom across all stations, driven by dissolved inorganic nitrogen (DIN) and phosphate (DIP), with a notable increase in August due to organic matter decomposition. The trophic index (TRIX) was also higher in the bottom layer, with surface TRIX influenced by DIN and salinity, and bottom TRIX by salinity, rainfall, COD, and DIN. The average TRIX for Jinhae Bay was 4.21±1.30, classified as "poor", but comparable to values from other regions. Continuous monitoring of the trophic state is essential for the sustainable management of Jinhae Bay's fisheries.

키워드

과제정보

본 연구는 국립수산과학원 수산시험연구사업(연안어장 환경 조사 및 변동 연구, R2024014)의 지원으로 수행되었습니다. 현장조사 및 시료분석에 도움을 준 국립수산과학원 해양환경연구과 연구원들께 감사를 드립니다.

참고문헌

  1. Alves G, Flores-Montes M, Gaspar F, Gomes J and Feitosa F. 2013. Eutrophication and water quality in a tropical Brazilian estuary. J Coast Res 65, 7-12. https://doi.org/10.2112/si65-002.1.
  2. Aoki S, Fuse Y and Yamada E. 2004. Determinations of humic substances and other dissolved organic matter and their effects on the increase of COD in Lake Biwa. Anal Sci 20, 159-164. https://doi.org/10.2116/analsci.20.159.
  3. Behrenfeld MJ, Boss E, Siegel DA and Shea DM. 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Cycles 19, 1-14. https://doi.org/10.1029/2004GB002299.
  4. Brito AC, Garrido-Amador P, Gameiro C, Nogueira M, Moita MT and Cabrita MT. 2020. Integrating in situ and ocean color data to evaluate ecological quality under the water framework directive. Water 12, 3443. https://doi.org/10.3390/w12123443.
  5. Cavalcanti LF, Cutrim MVJ, Maciel CCS, Sa AKD, Azevedo-Cutrim ACG, Santos TP and Cruz Q SD. 2022. Application of multiple indices to the evaluation of trophic and ecological status in a tropical macrotidal estuary (Equatorial Margin, Brazil). Chem Ecol 38, 122-144. https://doi.org/10.1080/02757540.2021.2023509.
  6. Cervantes-Duarte R, Jimenez-Quiroz MDC, Funes-Rodriguez R, Hernandez-Trujillo S, Gonzalez-Armas R and Anaya-Godinez E. 2021. Interannual variability in the trophic status and water quality of Bahia Magdalena, Mexico, during the 2015-2018 period: TRIX. Reg Stud Mar Sci 42, 101638. https://doi.org/10.1016/j.rsma.2021.101638.
  7. Chang WK, Ryu J, Yi Y, Lee WC, Lee CW, Kang D, Lee CH, Hong S, Nam J and Khim JS. 2012. Improved water quality in response to pollution control measures at Masan Bay, Korea. Mar Pollut Bull 64, 427-435. https://doi.org/10.1016/j.marpolbul.2011.11.011.
  8. Chen CC, Gong GC and Shiah FK. 2007. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Mar Environ Res 64, 399-408. https://doi.org/10.1016/j.marenvres.2007.01.007.
  9. Cho CH. 1978. On the Gonyaulax red tide in Jinhae Bay. Bull Korean Fish Soc 11, 111-114.
  10. Cho CH. 1979. Mass mortalitys of oyster due to red tide in Jinhae Bay in 1978. Bull Korean Fish Soc 12, 27-33.
  11. Cho KJ, Choi MY, Kwak SK, Im SH, Kim DY, Park JG and Kim YE. 1998. Eutrophication and seasonal variation of water quality in Masan-Jinhae Bay. J Kor Soc Oceanogr-The Sea 3, 193-202.
  12. Cho YB, Oh YK, Shin DC and Park CH. 2014. Distribution of total organic carbon and correlations between organic matters of sewage treatment plants. J Environ Anal Heal Toxicol 17, 207-214.
  13. Choi JY and Han DH. 2006. Improvement of measuring organic matters in water quality standards. J Korean Soc Environ Eng 28, 807-812.
  14. Han MW and Park YC. 1999. The development of anoxia in the artificial Lake Shihwa, Korea, as a consequence of intertidal reclamation. Mar Pollut Bull 38, 1194-1199. https://doi.org/10.1016/S0025-326X(99)00161-7.
  15. Huang XP, Huang LM and Yue WZ. 2003. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar Pollut Bull 47, 30-36. https://doi.org/10.1016/S0025-326X(02)00474-5.
  16. Jung HY and Cho KJ. 2003. SOD and inorganic nutrient fluxes from sediment in the downstream of the Nagdong River. Korean J Ecol Environ 36, 322-335.
  17. Jung KY, Ro YJ, Choi YH and Kim BJ. 2015. Hypoxia in a transient estuary caused by summer lake-water discharge from artificial dykes into Chunsu Bay, Korea. Mar Pollut Bull 95, 47-62. https://doi.org/10.1016/j.marpolbul.2015.04.043.
  18. Kang SW. 1991. Circulation and pollutant dispersion in Masan-Jinhae Bay of Korea. Mar Pollut Bull 23, 37-40. https://doi.org/10.1016/0025-326X(91)90646-A.
  19. Kim DS, Lim DI, Jeon SK and Jung HS. 2005. Chemical characteristics and eutrophication in Cheonsu Bay, west coast of Korea. Ocean Polar Res 27, 45-58. https://doi.org/10.4217/OPR.2005.27.1.045.
  20. Kim HG, Jung CS, Lim WA, Lee CK, Kim SY, Youn SH, Cho YC and Lee SG. 2001. The spatio-temporal progress of Cochlodinium polykrikoides blooms in the coastal waters of Korea. J Kor Fish Soc 34, 691-696.
  21. Kim SJ and Yoo YJ. 2017. Estimation of eutrophication during summer and fall in Danghang Bay. J Wetl Res 19, 383-392. https://doi.org/10.17663/JWR.2017.19.4.383.
  22. Kim SY, Jun SH, Lee YS, Lee YH and Kim BM. 2011. Characteristics of phosphate flux at the sediment-water interface in Gamak Bay during the hypoxic water mass. J Environ Sci 20, 1069-1078. https://doi.org/10.5322/jes.2011.20.9.1069.
  23. Kim SY, Lee YH, Kim YS, Shim JH, Ye MJ, Jeon JW, Hwang JR and Jun SH. 2012. Characteristics of marine environmental in the hypoxic season at Jinhae Bay in 2010. Korean J Nat Conser 6, 115-129.
  24. Kim Y, Lee JH, Kang JJ, Lee JH, Lee HW, Kang CK and Lee SH. 2019. River discharge effects on the contribution of smallsized phytoplankton to the total biochemical composition of POM in the Gwangyang Bay, Korea. Estuar Coast Shelf Sci 226, 106293. https://doi.org/10.1016/j.ecss.2019.106293.
  25. Kong X, Sun Y, Su R and Shi X. 2017. Real-time eutrophication status evaluation of coastal waters using support vector machine with grid search algorithm. Mar Pollut Bull 119, 307-319. https://doi.org/10.1016/j.marpolbul.2017.04.022.
  26. Kruskopf M and Flynn KJ. 2006. Corrigendum: Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growdi rate. New Phytol 169, 841-842. https://doi.org/10.1111/j.1469-8137.2006.01652.x.
  27. Kucuksezgin F, Gonul LT, Pazi I and Kacar A. 2019. Assessment of seasonal and spatial variation of surface water quality: Recognition of environmental variables and fecal indicator bacteria of the coastal zones of Izmir Bay, Eastern Aegean. Reg Stud Mar Sci 28, 100554. https://doi.org/10.1016/j.rsma.2019.100554.
  28. Lee CK, Park TG, Park YT and Lim WA. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30, S3-S14. https://doi.org/10.1016/j.hal.2013.10.002.
  29. Lee CW and Min BY. 1990. Pollution in Masan Bay, a matter of concern in South Korea. Mar Pollut Bull 21, 226-229. https://doi.org/10.1016/0025-326X(90)90338-9.
  30. Lee DH, Park GW, Lee CH and Shin YS. 2017. Assessment of ecosystem health during the freshwater discharge in the Youngsan River Estuary. Korean J Ecol Environ 50, 46-56. https://doi.org/10.11614/KSL.2017.50.1.046.
  31. Lee IC, Oh YJ and Kim HT. 2008. Annual variation in oxygen-deficient water mass in Jinhae Bay, Korea. J Korean Fish Soc 41, 134-139. https://doi.org/10.5657/kfas.2008.41.2.134.
  32. Lee JY, Kim SG and An SM. 2017. Dynamics of the physical and biogeochemical processes during hypoxia in Jinhae Bay, South Korea. J Coast Res 33, 854-863. https://doi.org/10.2112/JCOASTRES-D-16-00122.1.
  33. Lee JY, Park KT, Lim JH, Yoon JE and Kim IN. 2018. Hypoxia in Korean coastal waters: A case study of the natural Jinhae Bay and artificial Shihwa Bay. Front Mar Sci 5, 1-19. https://doi.org/10.3389/fmars.2018.00070.
  34. Lee JH, Lee DB, Kang JJ, Joo HT, Lee JH, Lee HW, Ahn SH, Kang CK and Lee SH. 2017. The effects of different environmental factors on the biochemical composition of particulate organic matter in Gwangyang Bay, South Korea. Biogeosciences 14, 1903-1917. https://doi.org/10.5194/bg14-1903-2017.
  35. Lee MJ, Seo JY and Beak SH. 2021. Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea. Korean J Environ Biol 39, 184-194. https://doi.org/10.11626/KJEB.2021.39.2.184.
  36. Lee MO and Kim JK. 2008. Characteristics of algal blooms in the southern coastal waters of Korea. Mar Environ Res 65, 128-147. https://doi.org/10.1016/j.marenvres.2007.09.006.
  37. Lee MO, Kim JK and Kim BK. 2023. Outbreaks and characteristics of microalgal blooms in Jinhae Bay, Korea. J Korean Soc Mar Environ Energy 26, 377-386. https://doi.org/10.7846/JKOSMEE.2023.26.4.377.
  38. Lee PY, P ark JS, Kang CM, Choi HG and Park JS. 1993. Studies on oxygen-deficient water mass in Chinhae Bay. Bull Nat Fish Res Dev Agency 48, 25-38.
  39. Lee YJ, Kim HG, Park YT and Seong HK. 1990. The role of marine bacteria in the dinoflagellate bloom. Bull Korean Fish Soc 23, 303-309.
  40. Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi SWA, Neira C, Rabalais NN and Zhang J. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063-2098. https://doi.org/10.5194/bg-6-2063-2009.
  41. Lim HS, Choi JW, Je JG and Lee JH. 1992. Distribution pattern of macrozoobenthos at the farming ground in the western part of Chinhae Bay, Korea. Bull Korean Fish Soc 25, 115-132.
  42. Lim KH and Shin HC. 2005. Temporal and spatial distribution of benthic polychaetous community in the northern Jinhae Bay. Korean J Environ Biol 23, 238-249. https://db.koreascholar.com/Article/Detail/5279.
  43. Oh SJ, Kang IS, Yoon YH and Yang HS. 2008. Optical characteristic on the growth of centric diatom, Skeletonema costatum (Grev.) Cleve Isolated from Jinhae Bay in Korea. Korean J Environ Biol 26, 57-65.
  44. Okaichi T. 1985. The Cause of Red-Tide in Neritic Waters. Japan Fisheries Resources Conversation Association, Tokyo, Japan, 58-75.
  45. Park CK. 1975. Eutrophication and chlorophyll content in the seawater of Jinhae Bay area. Bull Korean Fish Soc 8, 121-126.
  46. Park J, Cho Y, Lee WC, Hong S, Kim HC, Kim JB and Park J. 2012. Characteristics of carbon circulation for Ascidian farm in Jindong Bay in summer and winter. J Wet Res 14, 211-221. https://doi.org/10.17663/JWR.2012.14.2.211.
  47. Park MO. 2020. Spatiotemporal variation of oxygen deficient water mass in the enclosed bay, Korea. Ph.D. Dissertation, Pukyong National University, Busan, Korea.
  48. Park MO, Lee YW, Cho SA, Kim HM, Park JK, Kim SG, Kim SS and Lee SM. 2021. A study on the appropriateness as organic matters indicator and the distribution of chemical oxygen demand and total organic carbon in Masan Bay, Korea. J Korean Soc Oceanogr 26, 82-95. https://doi.org/10.7850/jkso.2021.26.2.082.
  49. Park SE, Hong SJ and Lee WC. 2009. Calculating average residence time distribution using a particle tracking model. J Ocean Eng Technol 23, 47-52.
  50. Pavlidou A, Simboura N, Rousselaki E, Tsapakis M, Pagou K, Drakopoulou P, Assimakopoulou G, Kontoyiannis H and Panayotidis P. 2015. Methods of eutrophication assessment in the context of the water framework directive: Examples from the Eastern Mediterranean coastal areas. Cont Shelf Res 108, 156-168. https://doi.org/10.1016/j.csr.2015.05.013.
  51. Pettine M, Casentini B, Fazi S, Giovanardi F and Pagnotta R. 2007. A revisitation of TRIX for trophic status assessment in the light of the European Water Framework Directive: Application to Italian coastal waters. Mar Pollut Bull 54, 1413-1426. https://doi.org/10.1016/j.marpolbul.2007.05.013.
  52. Primpas I and Karydis M. 2011. Scaling the trophic index (TRIX) in oligotrophic marine environments. Environ Monit Assess 178, 257-269. https://doi.org/10.1007/s10661-010-1687-x.
  53. Rabalais NN, Turner RE and Wiseman WJ. 2001. Hypoxia in the Gulf of Mexico. J Environ Qual 30, 320-329. https://doi.org/10.2134/jeq2001.302320x.
  54. Sathishkumar RS, Sundaramanickam A, Mohanty AK, Sahu G, Ramesh T, Balachandar K, Nithin A, Surya P and Silambarasan K. 2022. Seasonal assessment of the trophic status in the coastal waters adjoining Tuticorin harbor in relation to water quality and plankton community in the Gulf of Mannar, India. Oceanologia 64, 749-768. https://doi.org/10.1016/j.oceano.2022.07.002.
  55. Shin SY, Lee CI, Hwang SC and Cho KD. 2004. Relationship between pollution factors and environmental variation in waters around Masan Bay. J Kor Soc Mar Environ Safety 10, 69-79.
  56. Tavakoly-Sany SB, Monazami G, Rezayi M, Tajfard M and Borgheipour H. 2019. Application of water quality indices for evaluating water quality and anthropogenic impact assessment. Int J Environ Sci Technol 16, 3001-3012. https://doi.org/10.1007/s13762-018-1894-5.
  57. Vollenweider RA, Giovanardi F, Montanari G and Rinaldi A. 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: Proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9, 329-357. https://doi.org/10.1002/(SICI)1099-095X(199805/06)9:3<329::AIDENV308>3.0.CO;2-9.