DOI QR코드

DOI QR Code

Evaluation of Black Soldier Fly Hermetia illucens Meal as a Fish Meal Replacement for Growing Red Seabream Pagrus major

육성기 참돔(Pagrus major) 사료내 어분대체원으로서 동애등에(Hermetia illucens) 분 대체율 평가

  • Hyeon Jong Kim (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Seong-Mok Jeong (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Jin-Ho Bae (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Kang-Woong Kim (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Sang-Woo Hur (Aquafeed Research Center, National Institute of Fisheries Science)
  • 김현종 (국립수산과학원 사료연구센터) ;
  • 정성목 (국립수산과학원 사료연구센터) ;
  • 배진호 (국립수산과학원 사료연구센터) ;
  • 김강웅 (국립수산과학원 사료연구센터) ;
  • 허상우 (국립수산과학원 사료연구센터)
  • Received : 2024.05.31
  • Accepted : 2024.08.08
  • Published : 2024.08.31

Abstract

This study evaluated the effects of defatted and non-defatted black soldier fly meal (BSFM) as a fish meal replacement in growing red seabream. Four isonitrogenous and isolipidic diets were formulated: 0% BSFM (D1), 5% defatted BSFM (D2), 5% non-defatted BSFM (D3), and 5% defatted + non-defatted BSFM (1:1, D4). A total of 360 growing red seabreams (mean ± SD body weight, 98.9±0.29 g) were equally distributed into 12 circular polyethylene tanks (1,000 L; 30 fish per tank; N=3 tanks per treatment). The red seabream were fed until satiation twice daily for 12 weeks. After 12 weeks, growth, feed utilization, whole-body proximate composition, blood parameters, and immune related parameters were measured. No significant differences were observed in weight gain, specific growth rate, feed conversion ratio, morphological parameters, plasma metabolites, plasma lysozyme, glutathione peroxidase, and superoxide dismutase among the experimental groups. However, immunoglobulin M (IgM) in fish fed D2 and D3 were significantly higher than those in fish fed D1. Additionally, the fish in D2 group showed higher IgM levels than those in the other treatment groups. These results indicate that defatted and non-defatted BSFM could be utilized as a potential feed ingredient for fishmeal replacement for red seabream.

Keywords

Acknowledgement

이 논문은 국립수산과학원 수산시험연구사업(지속가능한 친환경 배합사료 생산기술 및 품질관리 연구, R2024038)의 지원으로 수행된 연구입니다.

References

  1. Abdul-Halim HH, Aliyu-Paiko M and Hashim R. 2014. Partial replacement of fish meal with poultry by-product meal in diets for snakehead Channa striata (Bloch, 1793), fingerlings. J World Aquac Soc 45, 233-241. https://doi.org/10.1111/jwas.12112.
  2. AOAC (Association of Official Analytical Chemists). 2005. Official Methods of Analysis. AOAC, Arlington, VA, U.S.A. https://doi.org/10.1002/0471740039.vec0284.
  3. Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbo R, Krogdahl A and Lock EJ. 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503, 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032.
  4. Choi HS, Kim SA and Shin HJ. 2015. Present and perspective on insect biotechnology. KSBB J 30, 257-267. https://doi.org/10.7841/ksbbj.2015.30.6.257.
  5. Clauss TM, Dove AD and Arnold JE. 2008. Hematologic disorders of fish. Vet Clin North Am Exotic Anim Pract 11, 445-462. https://doi.org/10.1016/j.cvex.2008.03.007.
  6. Dierick NA, Decuypere JA, Molly K, Van Beek E and Vanderbeke E. 2002. The combined use of triacylglycerols containing medium-chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition I. In vitro screening of the release of MCFAs from selected fat sources by selected exogenous lipolytic enzymes under simulated pig gastric conditions and their effects on the gut flora of piglets. Livest Prod Sci 75, 129-142. https://doi.org/10.1016/S0301-6226(01)00303-7.
  7. Dumas A, Raggi T, Barkhouse J, Lewis E and Weltzien E. 2018. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 492, 24-34. https://doi.org/10.1016/j.aquaculture.2018.03.038.
  8. FAO (Food and Agriculture Organization). 2024. Global Aquaculture Production (Online Query). Retrieved from https://www.fao.org/fishery/Statistics-query/en/global_Production/global_Production_quantity on Jul 18, 2024.
  9. Gai F, Cusimano GM, Maricchiolo G, Caccamo L, Caimi C, Macchi E, Meola M, Perdichizzi A, Tartarisco G and Gasco L. 2023. Defatted black soldier fly meal in diet for grow-out gilthead seabream (Sparus aurata L. 1758): Effects on growth performance, gill cortisol level, digestive enzyme activities, and intestinal histological structure. Aquac Res 2023, 3465335. https://doi.org/10.1155/2023/3465335.
  10. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R and Wurtele E. 2007. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac Res 38, 551-579. https://doi.org/10.1111/j.1365-2109.2007.01704.x.
  11. Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, Praeger C, Vucko MJ, Zeng C, Zenger K and Strugnell JM. 2019. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 1, 316-329. https://doi.org/10.1016/j.oneear.2019.10.018.
  12. Jeoung SM, Kim NL, Hur SW, Lee SH, Bae JH and Kim KW. 2023. Effect of dietary inclusion of black soldier fly larvae Hermetia illucens meal on growth performance of starry flounder Platichthys stellatus and feed value. Korean J Fish Aquat Sci 56, 373-379. https://doi.org/10.5657/KFAS.2023.0373.
  13. Jo SJ, Park SJ, Lee SB, Tran BT, Kim JS, Song JW, Lee BJ, Hur SW, Nam TJ, Lee KJ, Lee SH and Choi YH. 2021. Effect of low-fishmeal diets on some digestive physiological responses of juvenile and growing olive flounder (Paralichthys olivaceus) fed at an industrial-scale fish farm. Aquacult Rep 21, 100904. https://doi.org/10.1016/j.aqrep.2021.100904.
  14. Kishawy AT, Mohammed HA, Zaglool AW, Attia MS, Hassan FA, Roushdy EM, Ismail TA and Ibrahim D. 2022. Partial defatted black solider larvae meal as a promising strategy to replace fish meal protein in diet for Nile tilapia (Oreochromis niloticus): Performance, expression of protein and fat transporters, and cytokines related genes and economic efficiency. Aquaculture 555, 738195. https://doi.org/10.1016/j.aquaculture.2022.738195.
  15. Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A and Schulz C. 2012. When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute - growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364-365, 345-352. https://doi.org/10.1016/j.aquaculture.2012.08.041.
  16. Li S, Ji H, Zhang B, Zhou J and Yu H. 2017. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and asatopancreas histological structure. Aquaculture 477, 62-70. https://doi.org/10.1016/j.aquaculture.2017.04.015.
  17. Lim JH, Kim MG, Lim HW, Lee BJ, Lee SH, Hur SW, Kim KW and Lee KJ. 2022. Fish meal replacement with a mixture of plant and animal protein sources in extruded pellet (EP) diet for red seabream Pagrus major at low water temperature. Korean J Fish Aquat Sci 54, 350-357. https://doi.org/10.5657/KFAS.2021.0350.
  18. Madibana MJ, Mwanza M, Lewis BR, Fouche CH, Toefy R and Mlambo V. 2020. Black soldier fly larvae meal as a fishmeal substitute in juvenile dusky kob diets: Effect on feed utilization, growth performance, and blood parameters. Sustainability 12, 9460. https://doi.org/10.3390/su12229460.
  19. Magalhaes R, Sanchez-Lopez A, Leal RS, Martinez-Llorens S, Oliva-Teles A and Peres H. 2017. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476, 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021.
  20. Mashoof S and Criscitiello MF. 2016. Fish immunoglobulins. Biology 5, 45. https://doi.org/10.3390/biology5040045.
  21. Ouattara B, Simard RE, Holley RA, Piette GJP and Be'gin A. 1997. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 37, 155-162. https://doi.org/10.1016/S0168-1605(97)00070-6.
  22. Rothman JM, Raubenheimer D, Bryer MAH, Takahashi M and Gilbert CC. 2014. Nutritional contributions of insects to primate diets: Implications for primate evolution. J Hum Evol 71, 59-69. https://doi.org/10.1016/j.jhevol.2014.02.016.
  23. Rawski M, Mazurkiewicz J, Kieronczyk B and Jozefiak D. 2020. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 10, 2119. https://doi.org/10.3390/ani10112119.
  24. Sayramoğlu H, Ozturk RC, Ustaoglu D, Terzi Y, Yandi I, Kayis S, Capkin E and Altinok I. 2023. Effects of black soldier fly meal feeding on rainbow trout gut microbiota, immune-related gene expression, and Lactococcus petauri resistance. J Insects Food Feed 10, 141-1571-17. https://doi.org/10.1163/23524588-20230057.
  25. Song SH, Lim HW and Lee KJ. 2023. Evaluation of black soldier fly Hermetia illucens and mealworm Tenebrio molitor as a fish meal substitute in a low-fish meal diet for juvenile olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 56, 861-869. https://doi.org/10.5657/KFAS.2023.0861.
  26. Takakuwa F, Tanabe R, Nomura S, Inui T, Yamada S, Biswas A and Tanaka H. 2022. Availability of black soldier fly meal as an alternative protein source to fishmeal in red sea bream (Pagrus major, Temminck & Schlegel) fingerling diets. Aquac Res 53, 36-49. https://doi.org/10.1111/are.15550.
  27. Ushakova NA, Brodskii ES, Kovalenko AA, Bastrakov AI, Kozlova AA and Pavlov DS. 2016. Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dolk Biochem Biophys 468, 209-212. https://doi.org/10.1134/S1607672916030145.
  28. Xiao X, Jin P, Zheng L, Cai M, Yu Z, Yu J and Zhang J. 2018. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac Res 49, 1569-1577. https://doi.org/10.1111/are.13611.