DOI QR코드

DOI QR Code

Simultaneous Analysis of Alternative Antifouling Agents (Diuron and Irgarol 1051) and Triazine Herbicide (Prometryn) in Seawater Using LC/MS-MS

해수 중 신방오도료(Diuron and Irgarol 1051) 및 트리아진계 제초제 (Prometryn)에 대한 LC-MS/MS 동시 분석법 정립

  • Mikyoung Lee (Division of Marine Environment Research, National of Fisheries Science (NIFS)) ;
  • Sunggyu Lee (Division of Marine Environment Research, National of Fisheries Science (NIFS)) ;
  • Minkyu Choi (Division of Marine Environment Research, National of Fisheries Science (NIFS))
  • 이미경 (국립수산과학원 기후환경연구부 해양환경연구과) ;
  • 이성규 (국립수산과학원 기후환경연구부 해양환경연구과) ;
  • 최민규 (국립수산과학원 기후환경연구부 해양환경연구과)
  • Received : 2024.05.31
  • Accepted : 2024.07.31
  • Published : 2024.08.31

Abstract

A simultaneous analytical method was developed to quantify antifouling agents and triazine herbicides in seawater using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target compounds included diuron, irgarol 1051, and prometryn, which are prevalent in marine environments owing to their extensive use in antifouling coatings and agriculture. The analytical procedure involves solid-phase extraction (SPE) using HLB cartridges followed by LC-MS/MS analysis for precise quantification. The method exhibits high recovery rates for diuron (101% ± 1.25), irgarol 1051 (94.7% ± 2.08), and prometryn (93.7% ± 3.06). Seawater samples from 30 coastal sites in Korea were analyzed. Irgarol 1051 was not detected, whereas diuron was consistently detected across all sites, with concentrations from 0.68 to 11.3 ng/L, and prometryn was present at levels between 0.12 and 7.06 ng/L. The highest diuron and prometryn concentrations were recorded along the southeastern and western coasts, respectively. These findings underscore the critical need for continuous monitoring and regulations to manage these contaminants in marine ecosystems, thereby safeguarding ecological integrity and public health. This study establishes a robust analytical framework for the comprehensive assessment of multiple marine contaminants.

Keywords

Acknowledgement

이 논문은 2024년도 국립수산과학원 수산과학연구사업(R2024014)의 지원으로 수행된 연구입니다.

References

  1. Alewu B and Nosiri C. 2011. Pesticides and human health. In: Pesticides in the Modern World-Effects of Pesticides Exposure. InTech, Rijeka, Croatia. https://doi.org/10.5772/18734.
  2. Almeida E, Diamantino TC and de Sousa O. 2007. Marine paints: the particular case of antifouling paints. Prog Org Coat 59, 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017.
  3. Balakrishnan S, Takeda K and Sakugawa H. 2012. Occurrence of diuron and irgarol in seawater, sediments and planktons of Seto Inland Sea, Japan. Geochem J 46, 169-177. https://doi.org/10.2343/geochemj.1.0163.
  4. Beceiro-Gonzalez E, Gonzalez-Castro MJ, Pouso-Blanco R, Muniategui-Lorenzo S, Lopez-Mahia P and Prada-Rodriguez D. 2014. A simple method for simultaneous determination of nine triazines in drinking water. Green Chem Lett Rev 7, 271-277. https://doi.org/10.1080/17518253.2014.944940.
  5. Boxall ABA, Comber SD, Conrad AU, Howcroft J and Zaman N. 2000. Inputs, monitoring and fate modelling of antifouling biocides in UK estuaries. Mar Pollut Bull 40, 898-905. https://doi.org/10.1016/S0025-326X(00)00021-7.
  6. Brvar M, Okrajsek R, Kosmina P, Staric F, Kaps R, Kozelj G and Bunc M. 2008. Metabolic acidosis in prometryn (triazine herbicide) self-poisoning. Clin Toxicol 46, 270-273. https://doi.org/10.1080/15563650701665126.
  7. Carafa R, Wollgast J, Canuti E, Ligthart J, Dueri S, Hanke G and Zaldivar JM. 2007. Seasonal variations of selected herbicides and related metabolites in water, sediment, seaweed and clams in the Sacca di Goro coastal lagoon (Northern Adriatic). Chemosphere 69, 1625-1637. https://doi.org/10.1016/j.chemosphere.2007.05.060.
  8. Castro IB and Fillmann GEW. 2011. Tintas anti-incrustantes de terceira geracao: Novos biocidas no ambiente aquatico. Quim Nova 34, 1021-1031. https://doi.org/10.1590/S0100-40422011000600020.
  9. Chidya R, Derbalah A, Abdel-Dayem S, Kaonga C, Tsuji H, Takeda K and Sakugawa H. 2022. Contamination, dynamics, and health risk assessment of pesticides in seawater and marine samples from the Seto Inland Sea, Japan. Environ Sci Pollut Res 29, 67894-67907. https://doi.org/10.1007/s11356-022-20617-z.
  10. Dafforn KA, Lewis JA and Johnston EL. 2011. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar Pollut Bull 62, 453-465. https://doi.org/10.1016/j.marpolbul.2011.01.012.
  11. de Castro IB, Perina FC and Fillmann G. 2012. Organotin contamination in South American coastal areas. Environ Monit Assess 184, 1781-1799. https://doi.org/10.1007/s10661-011-2078-7.
  12. Di Landa G, Parrella L, Avagliano S, Ansanelli G, Maiello E and Cremisini C. 2009. Assessment of the potential ecological risks posed by antifouling booster biocides to the marine ecosystem of the Gulf of Napoli (Italy). Water Air Soil Pollut 200, 305-321. https://doi.org/10.1007/s11270-008-9914-6.
  13. Ecobichon DJ. 2001. Pesticide use in developing countries. Toxicol 160, 27-33. https://doi.org/10.1016/S0300-483X(00)00452-2.
  14. EU (European Union). 2008. Directive 2008/105/EC of the European Parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy. Official J Eur Union 348, 84-97.
  15. Evans SM, Birchenough AC and Brancato MS. 2000. The TBT ban: Out of the frying pan into the fire?. Mar Pollut Bull 40, 204-211. https://doi.org/10.1016/S0025-326X(99)00248-9.
  16. Hawkins NJ, Bass C, Dixon A and Neve P. 2019. The evolutionary origins of pesticide resistance. Biol Rev 94, 135-155. https://doi.org/10.1111/brv.12440.
  17. IMO (International Maritime Organization). 2001. Anti-fouling Systems. Retrieved from https://www.imo.org/en/OurWork/Environment/Pages/Anti-fouling.aspx on Mar 28, 2024. 
  18. IMO (International Maritime Organization). 2021. Marine Environment Protection Committee. Retrieved from https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-75th-session.aspx on Mar 28, 2024
  19. Key PB, Chung KW, Hoguet J, Sapozhnikova Y and Fulton MH. 2008. Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemonetes pugio. J Environ Sci Health B 43, 50-55. https://doi.org/10.1080/03601230701734865.
  20. Khan MJ, Zia MS and Qasim M. 2010. Use of pesticides and their role in environmental pollution. World Acad Sci Eng Technol 4, 85-91.
  21. Kim NS, Shim WJ, Yim UH, Hong SH, Ha SY, Han GM and Shin KH. 2014. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar Pollut Bull 78, 201-208. https://doi.org/10.1016/j.marpolbul.2013.10.043.
  22. Kobayashi N and Okamura H. 2002. Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44, 748-751. https://doi.org/10.1016/S0025-326X(02)00052-8.
  23. Kock-Schulmeyer M, Postigo C, Farre M, Barcelo D and de Alda ML. 2019. Medium to highly polar pesticides in seawater: Analysis and fate in coastal areas of Catalonia (NE Spain). Chemosphere 215, 515-523. https://doi.org/10.1016/j.chemosphere.2018.10.049.
  24. Konstantinou IK and Albanis TA. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ Int 30, 235-248. https://doi.org/10.1016/S0160-4120(03)00176-4.
  25. Lamoree MH, Swart CP, van der Horst A and van Hattum B. 2002. Determination of diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters. J Chromatogr A 970, 183-190. https://doi.org/10.1016/S0021-9673(02)00878-6.
  26. Manzo S, Buono S and Cremisini C. 2006. Toxic effects of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch Environ Contam Toxicol 51, 61-68. https://doi.org/10.1007/s00244-004-0167-0.
  27. Michra AK, Arya R, Tyagi R, Grover D, Mishra J, Vimal SR and Sharma S. 2021. Non-judicious use of pesticides indicating potential threat to sustainable agriculture. In: Sustainable Agriculture Reviews 50. Sustainable Agriculture Reviews. Kumar Singh V, Singh R and Lichtfouse E, eds. Springer, Cham, Germany, 383-400. https://doi.org/10.1007/978-3-030-63249-6_14.
  28. Nakhjavan B, Bland J and Khosravifard M. 2021. Optimization of a multiresidue analysis of 65 pesticides in surface water using solid-phase extraction by LC-MS/MS. Molecules 26, 6627. https://doi.org/10.3390/molecules26216627.
  29. Okamura H. 2002. Photodegradation of the antifouling compounds Irgarol 1051 and diuron released from a commercial antifouling paint. Chemosphere 48, 43-50. https://doi.org/10.1016/S0045-6535(02)00025-5.
  30. Okamura H, Aoyama I, Ono Y and Nishida T. 2003. Antifouling herbicides in the coastal waters of western Japan. Mar Pollut Bull 47, 59-67. https://doi.org/10.1016/S0025-326X(02)00418-6.
  31. Perina FC, de Souza Abessa DM, Pinho GLL and Fillmann G. 2011. Comparative toxicity of antifouling compounds on the development of sea urchin. Ecotoxicol 20, 1870-1880. https://doi.org/10.1007/s10646-011-0725-y.
  32. Piedra L, Tejedor A, Hernando MD, Aguera A, Barcelo D and Fernandez-Alba A. 2000. Screening of antifouling pesticides in sea water samples at low ppt levels by GC-MS and LC-MS. Chromatographia 52, 631-638. https://doi.org/10.1007/BF02789763.
  33. Polyrakis IT. 2009. Environmental pollution from pesticides. In: Predictive Modeling and Risk Assessment. Springer, Boston, MA, USA, 201-224
  34. Richards RP and Baker DB. 1993. Pesticide concentration patterns in agricultural drainage networks in the Lake Erie basin. Environ Toxicol Chem 12, 13-26. https://doi.org/10.1002/etc.5620120104.
  35. Sabik H, Jeannot R and Rondeau B. 2000. Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters. J Chromatogr A 885, 217-236. https://doi.org/10.1016/S0021-9673(99)01084-5.
  36. Sanchez-Rodriguez A, Sosa-Ferrera Z, Santana-del Pino A and Santana-Rodriguez JJ. 2011. Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain). Mar Pollut Bull 62, 985-991. https://doi.org/10.1016/j.marpolbul.2011.02.038.
  37. van Wezel AP and van Vlaardingen P. 2004. Environmental risk limits for antifouling substances. Aquat Toxicol 66, 427-444. https://doi.org/10.1016/j.aquatox.2003.11.003.
  38. Wang X, Jia R, Song Y, Wang M, Zhao Q and Sun S. 2019. Determination of pesticides and their degradation products in water samples by solid-phase extraction coupled with liquid chromatography-mass spectrometry. Microchem J 149, 104013. https://doi.org/10.1016/j.microc.2019.104013.
  39. Weng R, Lou S, Pang X, Song Y, Su X, Xiao Z and Qiu J. 2020. Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem 309, 125503. https://doi.org/10.1016/j.food-chem.2019.125503.
  40. Yang Y, Li S, Wang Z, Ren Y, Mu Y, Zhang X, van den Brink P, Sun H, Song Y and Cheng B. 2022. Acute toxicity, bioaccumulation and elimination of prometryn in tilapia (Oreochromis niloticus). Chemosphere 300, 134565. https://doi.org/10.1016/j.chemosphere.2022.134565.
  41. Zhang AQ, Zhou GJ, Lam MHW and Leung KMY. 2019. Toxicities of the degraded mixture of irgarol 1051 to marine organisms. Chemosphere 225, 565-573. https://doi.org/10.1016/j.chemosphere.2019.03.038.
  42. Zhang R, Du J, Dong X, Huang Y, Xie H, Chen J, Li X and Kadokami K. 2021. Occurrence and ecological risks of 156 pharmaceuticals and 296 pesticides in seawater from mariculture areas of Northeast China. Sci Total Environ 792, 148375. https://doi.org/10.1016/j.scitotenv.2021.148375.
  43. Zhao L, Yang M, Yu X, Liu L, Gao C, Li H, Fu S, Wang W and Wang J. 2023. Presence and distribution of triazine herbicides and their effects on microbial communities in the Laizhou Bay, Northern China. Mar Pollut Bull 186, 114460. https://doi.org/10.1016/j.marpolbul.2022.114460.