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Abstract

Purpose: Online food delivery platforms face challenges to operational efficiency due to increasing demand, a shortage of drivers, and 

the constraint of a one-order-at-a-time delivery policy. It is imperative to find solutions to address the inefficiencies in the food delivery 

industry. Bundling multiple orders can help resolve these issues, but it requires complex computations due to the exponential increase 

in possible order combinations. Research design, data and methodology: This study proposes three bundle delivery systems—static, 

dynamic, and hybrid—utilizing a machine learning-based classification model to reduce the number of order combinations for efficient 

bundle computation. The proposed systems are analyzed through simulations using market data from South Korea's online food delivery 

platforms. Results: Our findings indicate that implementing bundle systems extends service coverage to more customers, increases 

average driver earnings, and maintains lead times comparable to standalone deliveries. Additionally, the platform experiences higher 

service completion rates and increased profitability. Conclusions: This suggests that bundle systems are cost-effective and beneficial 

for all stakeholders in online food delivery platforms, effectively addressing the inefficiencies in the industry.
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1. Introduction12

The Online Food Delivery Platform (OFDP) industry 
has experienced rapid growth since COVID-19. With a 
valuation of USD 221.65 billion in 2022, the global online 
food delivery market is anticipated to grow at a compound 
annual growth rate (CAGR) of 10.3% from 2023 to 2030 
(Grand View Research, 2022). Food delivery services 
through online platforms are now viewed as essential rather 
than optional within the restaurant industry. The surge in 
demand has led to challenges in meeting immediate delivery 
requirements, especially during mealtime hours when 60% 
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of orders are placed. To reduce costs, OFDPs work with 
freelance drivers who can choose orders based on profit 
maximization, which can sometimes compromise customer 
satisfaction. Drivers often bundle multiple orders to save 
time and distance, but this practice can lead to decreased 
food quality. Despite some platforms banning order 
bundling to maintain food quality, the shortage of drivers 
during peak hours highlights the need for bundle delivery 
systems that increase the number of delivered orders while 
maintaining high service quality.

To achieve efficient bundle delivery, it is essential to 
respect drivers' control over their schedules and routes, 
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known as autonomy, while ensuring high service quality. 
Platforms must consider the impact on customer satisfaction, 
guarantee timely deliveries to maintain food freshness and 
optimize computational resources to avoid system overload. 
To address these challenges, we propose a bundle 
construction system that can reduce computation time and 
customize bundles for each driver, preserving their freedom 
to choose.

The paper is structured as follows: Section 2 provides 
related works on online food delivery platforms and existing 
bundle delivery systems. Section 3 introduces the 
framework for the bundle delivery system. Section 4 
describes the specific bundle delivery systems proposed in 
this study. Section 5 analyzes the results of the experiments 
conducted. Section 6 concludes the paper and suggests 
directions for future research.

2. Related Works 

Online Food Delivery Platforms (OFDPs) operate within 
the on-demand economy, where both customers and drivers 
use the platform. Customers and drivers connect with 
various service or goods providers through the platform 
(Chakravarty et al., 2014). Drivers have autonomy within 
their relationship with the platform; they can easily switch 
between different OFDP apps by deleting one app and 
installing another. Therefore, OFDPs must consider drivers' 
preferences, needs, and autonomous behavior in their 
operational strategies. Drivers’ autonomy (Tilly & Tilly, 
1998), defined as control over time, place, and tasks, is 
critical in the gig economy, including OFDPs, where 
workers self-schedule and accept or reject jobs (Shapiro, 
2018). This autonomy also enhances drivers' intrinsic 
motivation, sense of competence, and feeling of relevance 
(Deci & Ryan, 2013; Ryan & Deci, 2000). From a legal 
standpoint, drivers' autonomy is regarded as a fundamental 
principle of the platform business model.

While bundling has proven effective in enhancing the 
efficiency and profitability of food delivery platforms 
(Reyes et al., 2018b; Steever et al., 2019), increasing bundle 
size can lead to longer computational times and longer 
customer wait times. Consequently, previous studies often 
focus on bundles comprising two (Yildiz & Savelsbergh, 
2019; Wang et al., 2021; Reyes et al., 2018b; Steever et al., 
2019) or three orders (Li et al., 2021). In addition, in the 
literature, bundles are typically categorized as either
composed of orders from the same restaurant (Reyes et al., 
2018a), or orders from multiple restaurants (Steever et al., 
2019). These studies indicate that bundling reduces the total 
distance traveled compared to Point-to-Point (P2P) delivery 
method. However, creating bundles is relatively 
straightforward when orders are all from the same restaurant 

(Reyes et al., 2018a). Additionally, although Steever et al. 
(2019) considered bundles with orders from multiple 
restaurants, they assumed that these orders are part of a
single customer’s order.

The literature primarily employs mathematical 
programming or machine learning. Mathematical 
programming involves developing mathematical models 
and solution techniques to efficiently find solutions. Yildiz 
and Savelsbergh (2019) proposed a model using a column 
and row generation algorithm to reduce overall driver 
compensation costs. Steever et al. (2019) aimed to decrease 
delivery delays and increase early deliveries in an auction-
based system. Reyes et al. (2018b) used a rolling-horizon 
algorithm to dynamically select the optimal order bundles 
over time. 

The machine learning literature focuses on identifying 
bundle patterns from data. Li et al. (2021) used neural 
networks to generate order bundles, demonstrating high 
accuracy and efficiency. Wang et al. (2021) applied a 
decision tree model trained with Extreme Gradient Boosting 
(XGBoost) to optimize the assignment of bundles and orders 
in China's OFDP Meituan.

Our study differs in the following three aspects:
1. Despite the drawback of increased computational 

complexity, we consider bundles with sizes of both 2 and 3.
Furthermore, we consider bundles consisting of orders from 
multiples restaurants for multiple customers.

2. We consider driver autonomy in the simulation 
experiments. While some studies acknowledge drivers' right 
to reject orders (Li et al., 2021; Ulmer et al., 2021), we 
assume that drivers have the autonomy to choose the orders 
or bundles that benefit them, rather than being obligated to 
accept the bundles assigned by the platform. 

3. We introduce a machine learning-based system for 
efficient bundle calculation and analyze it using real-world 
data. Given that South Korea's OFDP market is among the 
most active in the world, it can provide insights not yet 
explored in the existing literature.

3. Bundle Construction and Selection System

We assume the food delivery platform with � drivers 
and � restaurants. Orders are received in real-time 
associated with a restaurant (�), a customer (�), and the time 
required to prepare the food (�). For each order, the platform 
calculates the origin-destination time (ODT). ODT is the 
estimated travel time from the restaurant to the customer. 
The food lead time (FLT) is the estimated time between food 
pick-up and delivery to the customer. The lead time (LT) is 
the estimated delivery time from order placement to delivery 
completion. 

On receipt of an order, the platform must decide whether 
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to publish the order immediately or calculate a bundle for it. 
Our policy is that an order can be included in a bundle if its 
FLT within a bundle does not exceed twice the ODT. As FLT 
increases, food quality often declines, causing customer 
dissatisfaction. Customers with shorter ODT—those closer 
to the restaurant—expect a smaller increase in FLT, while 
those with longer ODT are more tolerant of longer FLT. To 
balance these expectations and avoid overly limiting bundle 
creation, we set the FLT upper limit at twice the ODT. 
Bundle construction, which is the process of determining 
orders that should be delivered together as a bundle, 
involves exploring potential bundle candidates and 
calculating the associated delivery route along with the 
associated delivery time. Once bundle construction is 
complete, the platform selects bundles for drivers to choose 
from. Orders that cannot be delivered within 60 minutes are 
canceled (Ahn & Lee, 2018). The platform’s objective is to 
maximize the total number of fulfilled deliveries.

Figure 1 outlines the bundle construction and selection 
system, consisting of three distinct processes: grouping 
orders, constructing route, selecting bundles. 

Figure 1: Bundle Construction and Selection System. 
Source: Provided by Authors

Grouping Orders: To be a bundle, individual orders 
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crucial for addressing the computation issue, as considering 
all possible order stacks requires intensive computation.

Constructing Routes: For each order stack, the 
platform generates all possible routes, ensuring that the food 
lead time for each order remains within the threshold. 
Computation in this process is less critical because the 
number of possible routes of an order stack is limited due to 
the condition that restaurants must be visited before 
customers. For instance, in the case of an order stack 
comprising two orders, �  and � , each with origin and 

destination pairs ( �� , ��)  and (  �� , �� ), there are four 

potential routes: �� − �� − �� − ��  , �� − �� − �� − �� , �� −

�� − �� − �� ,and  �� − �� − �� − �� . Similarly, for an order 

stack with three orders, the total number of possible routes 
is limited to 36.

Selecting Bundles: Publishing too many bundles can 
make it difficult for drivers to select orders and may 
decrease their autonomy in the selection process. Therefore, 
the platform selects the route that maximizes the saved 
travel distance when the orders are delivered as a bundle.

4. System Improvement

In the system discussed in Section 3, certain 
inefficiencies arise from the exhaustive consideration of all 
potential order stacks and the construction all valid routes 
for each order stack. This section presents improvements to 
the processes of grouping orders and constructing routes 
using an enhanced order grouping technique and a 
classification model (CM). The CM, which is known for its 
ability to capture domain-specific features and to adeptly 
classify data across various domains, the CM is structured 
as an ensemble and is trained using the XGBoost package. 
The enhanced order grouping technique uses parameters 
obtained from the CM to determine the search range for 
grouping orders. The route construction process includes an 
additional step: before constructing routes, the CM briefly 
classifies whether an order stack can form a bundle. Only 
the classified order stacks proceed to route construction. 

In Section 4.1, we refine the grouping order process by 
focusing on relevant orders stacks and incorporating 
parameters extracted from the CM. This refinement results 
in a significant reduction in the number of order stacks to be 
considered, effectively addressing the inefficiencies and 
contributing to an improved bundle construction and 
selection system. In Section 4.2, we describe a classification 
model to determine whether an order stack qualifies as a 
bundle. 

4.1. Enhanced Order Grouping Process

In this section, we enhance the grouping order process 
described in Section 3. Selectively focusing on the relevant 
order stacks associated with a pre-determined pivot order, 
we significantly decrease the number of order stacks 
requiring further process. Furthermore, we integrate 
parameters extracted from the classification model to 
augment the efficiency of the bundle construction system.

This process includes (�) the selection of a pivot order, 
denoted as � , and (��)  the identification of the set ��  of 
orders that can comprise order stack when associated with 
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the pivot order � . Selecting the pivot order depends on 
whether the bundle construction system is dynamic, static, 
or hybrid. The details of this are explained into Section 4.3. 
For now, we assume that we have a pivot order � . To be 
included in ��  an order must satisfy the following 
conditions: the distance from its restaurant to the restaurant 
of pivot order � is below a specified threshold, denoted as 
�������� , and the distance from its customer to the customer 

of pivot order �  is below a threshold, ������������� . 
Additionally, the orders are sorted in a non-increasing order 
based on their distance between their customers and the 
customer of pivot order �. The size of ��  is restricted by a 
predetermined threshold, denoted as ������.

The thresholds ��������  and ������������� are extracted 

from the if-then rules within the decision tree of the 
classification model described in Section 4.2. Given that the 
decision tree branches are designed to maximize 
classification performance, the if-then rules contain the 
information to classify order stacks as bundle-able or not. 
Specifically, we extract all the values of the distances 
between restaurants (and customers) from the if-then rules 
and calculate their average as ��������  and �������������. 

4.2. Classification Model

In this section, we introduce a classification model that 
determines whether an order stack can be bundled or not. 
The first step of the classification model is to select the 
relevant features. Since bundles are related with 
geographical characteristics, the selected features should 
include information that affects the bundle construction, 
including location, distance, area, and time.

(�)  Location feature: This includes the location 
coordinates of the restaurants and the customers, as well as 
the difference in coordinates between them.

(��)  Distance feature: This includes the distance from 
the restaurant to the customer, the distance between 
restaurants, and the distance between customers.

(���) Area feature: This represents the area enclosed by 
the restaurants or customers within an order stack. A smaller 
value indicates that orders are densely located, resulting in a 
short detour when bundled together. In essence, the area 
feature provides insight into the spatial arrangement of the 
order set, providing valuable information about the potential 
for efficient bundling.

(��)  Time feature: This includes the time of order 
placement.

From the perspective of CM training, bundle-able order 
stacks are very rare compared to non-bundle order stacks. 
Specifically, bundle-able order stacks account for only 1% 
for size 2 bundles and 0.1% for size 3 bundles. To address 
this imbalance, we use the Synthetic Minority Over-

sampling Technique (SMOTE) to generate more bundle-
able order stacks data and balance the dataset.

The CM uses decision trees as the base learner and is 
trained by minimizing the gradient. The final model includes 
logistic regression and random forest classifier along with 
the decision tree model. During training, the best 
combination of hyperparameters (subsample, minimum 
child weight, learning rate, max depth, number of estimators) 
is chosen to enhance performance. 

It is important to note that the CM has potential 
limitations, including misclassification, commonly referred 
to as false positives and false negatives. False positives are 
mitigated through route construction in the bundle system. 
Although false negatives are not directly addressed by the 
system, the CM is designed to classify order stacks during 
peak hours, when order volumes are very high, thereby 
minimizing the impact of false negatives.

4.3. Three Bundle Systems

In this section, we present three different bundle systems: 
Dynamic, Static, and Hybrid.

4.3.1. Dynamic System

In the dynamic system, each time a new order arises, it 
is considered as a pivot and the entire process, from 
grouping order to constructing bundle, is executed in real-
time (See Figure 2). Since all bundles calculated in the 
dynamic system include the pivot order, only a single bundle 
can be selected. We select the bundle with the largest saved 
travel time.

 

Figure 2: Dynamic System. Source: Provided by Authors

This dynamic system ensures fast computation by 
focusing solely on orders proximate to the pivot (new order) 
and constructing potential routes for those orders. However, 
this limitation may hinder finding better bundles. 
Additionally, this greedy selection strategy favoring the 
largest-value bundle may lead to inefficient results. The 
Dynamic Vehicle Routing Problem (DVRP) also faces 
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similar challenges. In DVRP, delaying route construction to 
gather more information is a common strategy (Ferrucci, 
2013).

4.3.2. Static System

In the static system, we consider orders occurring during 
the time interval ( � − 1 , �]  and proceed the bundle 
construction process at discrete time points �. As discussed 
in Section 3, the number of orders considered directly 
increases the number of order stacks. Therefore, techniques 
that can reduce the number of order stacks should be 
employed for the static system. 

The goal of redefining pivot orders is to calculate the 
bundles that have a high probability of being selected by 
drivers at time � . We make two assumptions about the 
drivers: 1) To maximize profit, drivers will try to select the 
next order immediately after completing the current one, and 
2) During the order selection process, drivers will only 
explore a certain number of orders. We call this number the 
“max exploring threshold”.

Redefining Pivot Orders: We list drivers in order of 
their completion times, starting with the earliest. For each 
driver, we arrange orders based on the distance between the 
driver's previous order completion location and the store of 
each order. From these, we select up to the max exploring 
threshold number of orders. This process is repeated for each 
driver. Orders selected in this manner may be chosen 
multiple times by different drivers. These selected orders 
undergo additional clustering based on spatial proximity. 
Initially, stores are clustered based on their locations using 
the K-Nearest Neighbor algorithm. Within each store cluster, 
orders are further clustered based on customer locations. 
Subsequently, for each cluster, we compute the centroid 
order, which is then redefined as a pivot order.

Enhanced Order Grouping Process: For each 
redefined pivot order, the static system employs the 
enhanced order grouping process described in Section 4.1 to 
generate order stacks. Note that the orders identified in the 
redefining pivot order step become pivots, and the other 
(non-pivot) orders can form a bundle of size 2 or 3 with the 
pivot order. Hence, each order stack generated in this step 
includes one redefined pivot. Subsequently, these clustered 
order stacks undergo the CM evaluation as described in 
Section 4.2.

Note that, in the static system, bundles generated through 
the enhanced order grouping process must include the 
redefined pivot order as a pivot. This requirement implies 
that the system might overlook better bundles composed 
solely of non-pivot orders. To address this, the static system 
explores neighborhoods to consider other bundles that were 
not considered in the enhanced order grouping process. 

Searching Neighborhoods: During the redefinition of 
pivot orders, we identified pivot orders and their 
neighborhoods (orders belonging to the cluster of the pivot 
order). For each order stack with pivot order �, we select an 
order from pivot order �’s neighborhood set and replace the 
pivot order in the stack with that order. This creates a new 
order stack composed solely of non-pivot orders. Since the 
pivot order and its substitute are within the same cluster, 
they are spatially proximate. We repeat this process for 
every order belonging to the pivot order �’s neighborhood 
set. For these newly created order stacks, if the food lead 
time of each component does not exceed twice the ODT, 
then these order stacks are considered bundles. This 
straightforward approach efficiently generates good-quality 
bundles.

Selecting Bundles: Ensuring driver autonomy on the 
platform positively impacts driver loyalty. Therefore, when 
selecting bundles from generated order stacks, the platform 
should prioritize maximizing saved travel time without 
compromising driver autonomy. In the static system, only 
bundles without duplicate orders are published to facilitate 
drivers' decision-making. Displaying too many bundles on 
the driver's app screen can hinder their autonomous 
decision-making process. To calculate saved travel time, we 
compare how much travel time is reduced by each bundle 
compared to point-to-point deliveries.

Figure 3: Static System. Source: Provided by Authors

Figure 3 outlines the static system. It begins with 
redefining the pivot order and then applies the enhanced 
order grouping process described in Section 4.1. This results 
in generation of clustered order stacks and neighborhood 
order stacks. The clustered order stacks undergo the CM 
evaluation, after which routes are constructed for these order 
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stacks. Meanwhile, the neighborhood order stacks undergo 
the neighborhood searching process, which will be 
explained below, and the bundles generated from 
neighborhood order stacks will be added to the bundle pool. 
In the final step, the static system proceeds to bundle 
selection.

4.3.3. Hybrid System 

The hybrid system combines both dynamic and static 
systems, leveraging the real-time responsiveness of the 
dynamic system alongside the accumulated information 
from the static system. The hybrid system consists of static 
and dynamic parts, each operating independently. 
Specifically, the dynamic part activates whenever a new 
customer order is received, while the static part runs 
periodically to handle all pending orders. During this 
process, a bundle published by one part may include orders 
that are already included in the bundle from the other part. 
In the case of overlapping orders in the bundles published 
by the static and dynamic parts, the bundle generated by the 
dynamic part takes priority, and the overlapping bundle from 
the static part is removed.

5. Experimental Results

5.1. Generation of Instance

The experiment uses real data from Songpa (33.65 km²) 
and Dongjak (16.35 km²), each with 4800 orders from 230 
restaurants. Figure 4 presents a screenshot from a 
commercial map service, integrated with data on restaurants 
and customers. As shown in Figure 4, Dongjak has 
approximately twice the number of restaurants and orders 
per unit area compared to Songpa, resulting in a higher 
overall order density. However, while Songpa has a 
relatively lower overall order density than Dongjak, it is 
characterized by large apartment complexes with very high 
order densities.

1. Order generation involves two sampling steps:
Sampling the restaurants: From a public database of Seoul, 
230 restaurants are sampled. 

2. Sampling customer locations: From a public building 
database in Seoul, customer locations are sampled. Orders 
are generated over two-hour period using a Poisson process, 
which simulates peak times for lunch or dinner. Each 
restaurant receives an average of 20 orders per hour, with an 
average distance of 1.2 km between restaurants and 
customers.

(a) Dongjak

Source: Provided by Authors

(b) Songpa

Figure 4: Generated Instances of Dongjak and Songpa 
with Restaurants (marked in Blue) and Customers (in 

Orange). 

Conditions and assumptions:
· Approximately 10% of all orders include time-

sensitive menus. These sensitive orders can only be included 
in a bundle if their expected FLT is less than ODT plus 5 
minutes. For other orders, they can only be included in a 
bundle if their FLT does not exceed twice the ODT.

· Drivers’ speed is 16.8 km/h, adjusted for narrow 
and congested alleyways.

· Food pickup takes one minute, and delivery takes 
two minutes.
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· The delivery fee is based on Euclidean distance: 
$2.36 for 0-675 meters, $2.75 for 675-1900 meters, and 
$2.75 plus $0.06 per 100 meters beyond 1900 meters.

The experiment assumes:
· The platform can monitor each driver’s location 

and task in real time. Note that task could be a single order 
or a bundle of size 2 or 3.

· Drivers select the most profitable task; if a bundle 
is less profitable, the driver will choose a single order that 
offers higher profitability. This illustrates the autonomous 
decision-making of drivers in the experiments.

· Drivers can only perform one task at a time and 
cannot select more than two tasks simultaneously.

· Drivers select tasks from a list sorted in ascending 
order based on the distance between their current location 
and the start point of the task (the first restaurant in the 
bundle).

· For bundle tasks, drivers must follow the visit 
sequence provided by the platform.

5.2. Classification Model Performance

We trained the CM with order stack sizes of 2 and 3 for 
the Songpa and Dongjak instances. Table 1 demonstrates 
that each CM can classify whether a given order stack can 
form a bundle or not. This classification helps reduce the 
number of order stacks requiring route construction. The 
performance of the CM is measured using three metrics: 
Recall, Precision, and Fall-out. Recall measures the ratio of 
correctly classified order stacks, with high recall indicating 
accurate classification. Precision measures the ratio of 
correctly classified bundles among those identified as 
bundles by the CM, with high precision indicating high 
accuracy. Fall-out measures the proportion of non-bundle 
data misclassified as bundles. A low fall-out value in Table 
1 indicates the accurate classification of non-bundles, 
thereby achieving the goal of reducing the number of routes 
constructed.

Note that the following performance metrics are 
averages from 30 simulations. The experimental 
environment includes an i7-6700 CPU with a clock speed of 
3.40 GHz and 16 GB of RAM, and the experiments were 
coded using Python 3.6.

Table 1: Classification Model Performance
Measure

Recall Precision Fall-out

Classification 
model

B2-Songpa 0.93 0.90 0.003

B3-Songpa 1 1 0

B2-Dongjak 0.97 0.92 0.008

B3-Dongjak 0.99 0.99 0.00004

To analyze the performance of our dynamic, static, and 
hybrid models designed using the CM model, we compare 
their runtime with that of the enumeration system described 
in Section 3. This enumeration system constructs routes for 
all order stacks obtained from the enhanced order grouping 
process, without using a CM. The enumeration and static 
systems are invoked every 5 minutes, the dynamic system 
every 0.67 seconds (simulating 40 orders per minute), and 
the hybrid system every 5 minutes and upon receiving new 
orders.

Table 2 compares computation times for the enumeration, 
dynamic, static, and hybrid systems in Dongjak and Songpa. 
The dynamic, static, and hybrid systems demonstrate shorter 
computation times compared to the enumeration system. 
Specifically, the static system shows a shorter Time per run 
than the enumeration system with the same running interval, 
attributed to the CM reducing the number of order stacks 
requiring route construction.

Table 2: Run Time of Each System

Instance Variation Time per Run(sec) Run Interval(sec)

Songpa

Enumerate 84.41 300

Static 15.37 300

Dynamic 0.24 0.67

Hybrid 0.30 0.67

Dongjak

Enumerate 359.45 300

Static 36.15 300

Dynamic 0.23 0.67

Hybrid 0.33 0.67

In Dongjak, the Time per run for the enumeration system 
exceeds its running interval, indicating it cannot complete 
computations before the next run. In Songpa, the Time per 
run for the enumeration system is more than four times 
longer, suggesting performance variability.

The CM significantly reduces the Time per run in the 
dynamic, static, and hybrid systems. Conversely, the 
enumeration system, where CM is not used, exhibits 
significantly longer Time per compared to the other systems. 
Specifically, in the Dongjak instance, the enumeration 
system’ Time per run even exceeds the run interval, 
indicating its impracticality.

In the dynamic and hybrid systems, the Songpa and 
Dongjak instances show minimal differences in Time per 
run, indicating that the computational load in these systems 
does not significantly favor one instance over the other. 
However, in the static system, Songpa takes more than twice 
as long time per run compared to Dongjak. This difference 
may be attributed to higher overall order density in Dongjak, 
which results in a greater number of candidate order stacks 
compared to Songpa. Nevertheless, even with this difference, 
the computation time in the static system remains under 40 
seconds, making it more practical than the enumeration 
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system, which takes approximately 6 minutes to complete 
its tasks.

5.3. Performance of Bundle Systems from the 
Perspectives of Platform Stakeholders

In this section, we analyze whether the dynamic, static, 
and hybrid bundle systems improve various performance 
metrics of the existing delivery platform from the 
perspectives of different stakeholders. For each stakeholder, 
we introduce appropriate metrics and examine how these 
metrics change with the bundle system. For drivers, we 
assess how average earnings have changed with the 
introduction of bundling and evaluate the fairness of their 
experience by examining the relationship between travel 
time and compensation. For the platform, we evaluate profit 
and customer service ratio. Finally, for customers, we 
analyze improvements in LT (Lead Time) and FLT (Food 
Lead Time).

As a benchmark for comparing the performance of the 
bundle systems, we consider the Point-to-Point (P2P) 
delivery system, which delivers one customer order at a time, 
and compare it with the three bundle systems.

Drivers: Assuming all drivers have the same hourly 
driving cost, we analyze how their earnings improve across 
dynamic, static, and hybrid systems compared to the P2P 
method. Table 3 details drivers’ average earnings and their 
deviations from the P2P method. In Songpa, drivers' average 
earnings increased in all bundle systems, reflecting an 
increase of 5.55% to 5.88%. In Dongjak, drivers’ average 
earnings increased by 11.99%, 13.21%, and 12.09% across 
all systems compared to the P2P method, which is twice of 
Songpa. Notably, the differences between instances (Songpa 
vs. Dongjak) are more pronounced than those between 
different systems. These variations are due to geographical 
characteristics of the two areas. Since drivers' earnings 
depend on the distance they travel, this suggests that in 
Songpa, orders from large apartment complexes are bundled 
together, resulting in very short travel distances for drivers.

Table 3: Average Earning of Drivers

Instance Type
Average 

Earnings per 
Hour ($/h)

Increase in Average 
Earnings Compared 

to P2P (%)

Songpa

Static 12.32 5.73%

Dynamic 12.29 5.55%

Hybrid 12.33 5.88%

P2P 11.65 -

Dongjak

Static 12.77 11.99%

Dynamic 12.91 13.21%

Hybrid 12.78 12.09%

P2P 11.40 -

(a) Songpa

(b) Dongjak

Figure 5: Cumulative Frequency Graph of the Drivers’ 

Earnings per Hour. Source: Provided by Authors

The introduction of bundles significantly impacts 
average earnings for most drivers. In Songpa, the percentage 
of drivers earning over $12 per hour through the P2P 
approach increases from 35% to 60% with bundles (see 
Figure 5 (a)). Similarly, in Dongjak, this percentage rises 
from 30% to 70% (Figure 5 (b)). Given that $12 exceeds 
South Korea's minimum wage, bundles have the potential to 
attract more drivers to the platform. Furthermore, bundles 
enable drivers to increase their order processing capacity, 
allowing them to earn $16 or more per hour. This 
demonstrates how bundles not only enhance earnings for 
most drivers but also support higher income levels beyond 
basic wage thresholds. 

Fairness is a crucial factor that we consider because 
driver satisfaction is closely tied to the fairness of the 
platform (Griesbach et al., 2019). For example, ride-hailing 
platforms such as Uber are regarded as fair when drivers’ 
earnings correspond proportionally to their active work 
hours (Sühr et al., 2019). Similarly, in food delivery 
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platforms, fairness revolves around maintaining a balance 
between drivers’ labor input and their earnings. We evaluate 
platform fairness by analyzing the regression coefficient 
between drivers’ total traveled distances and earnings.

Table 4: Slopes of the Linear Regression Equation for 
Earnings Based on the Moving Distance

Instance Type Slope

Songpa

Static 19. 45**

Dynamic 18.44**

Hybrid 25.75**

P2P -39.04**

Dongjak

Static 78.04**

Dynamic 87.61**

Hybrid 92.91**

P2P -26.47**

Note: **:p-value < 0.01.

Table 4 presents the linear regression coefficients of 
earnings for total traveled distance. In the P2P approach, a 
negative coefficient indicates that drivers’ earnings decrease 
as the distance between the restaurant and the customer 
increases, incentivizing drivers to prefer shorter-distance 
orders for higher earnings. This phenomenon may explain 
longer waiting times for long-distance orders in practice. 
Conversely, in the static, dynamic, and hybrid systems with 
bundles, the regression coefficients are positive. This 
indicates a direct relationship between traveled distance and 
earnings: drivers can earn more as they undertake longer 
trips compared to P2P. This highlights how bundles promote 
fairness by rewarding drivers for their efforts in fulfilling 
longer-distance orders.

Platform: The platform's service rate and revenue are 
critical metrics for evaluating bundle systems, which help 
assess the overall financial performance and effectiveness of 
the bundle systems. Assuming the platform’s profit is 
calculated as 2% of the delivery fees paid by the customers,
we obtain the following results.

Table 5: Platform-related Performance Metrics

Instance System
Service 
Rate (%)

Increase 
in Service 

Ratio 
Compared 
to P2P (%)

Platform 
Profit 

($)

Songpa

Static 77.42% 3.93% 207.28

Dynamic 77.23% 3.74% 206.46

Hybrid 77.91% 4.42% 208.60

P2P 73.49% 195.76

Dongjak

Static 75.07% 6.84% 214.83

Dynamic 75.63% 7.40% 216.89

Hybrid 76.69% 8.46% 219.87

P2P 68.23% 191.65

As shown in Table 5, the service rate in Songpa is 
slightly higher than in Dongjak, which can be attributed to 
the bundling of orders from large apartment complexes in 
Songpa. In contrast, the increase in service rate with bundle
systems compared to P2P in Dongjak is about twice as much 
as that in Songpa, indicating a more pronounced effect of 
the bundle systems in Dongjak.

Table 5 also shows the platform profit during the 2-hour 
lunch period. When calculating the platform's profit over the 
course of a day and a month, it is evident that using bundle
systems results in a significantly higher increase in profit 
compared to P2P. Furthermore, given the recent trend of 
rising delivery fees, if the platform's profit were calculated 
as 5% of the delivery fee instead of 2%, the impact would 
be even greater.

The cost of implementing the bundle system is minimal, 
primarily covering server computation expenses. In contrast, 
the bundle systems lead to a significant increase in earnings 
for both drivers and the platform. This brief cost-benefit 
analysis clearly highlights the advantages of the bundle 
systems from the perspective of platform profitability.

Bundles provide a higher service rate and platform profit 
compared to P2P, which contributes to the long-term growth 
of the online food delivery platform market and enhances its 
network effect. Positive service experiences are known to 
foster customer loyalty (Frank, 2007). As more bundles can 
be efficiently formed and delivered, this attracts more 
drivers to the platform, creating a positive feedback loop 
beneficial for both customers and drivers. Additionally, 
considering customer concerns about current delivery fees, 
the platform might contemplate reducing these fees based 
on the increased profits. In the long term, this strategy could 
contribute to expanding the overall market for food delivery 
services.

Customers: Customer satisfaction is assessed by 
examining LT and FLT. Table 6 presents the average ODT,
the average LT, average FLT, and the increases in LT and 
FLT compared to P2P for each system in Songpa and 
Dongjak.

The increase in LT(Lead Time) and FLT(Food Lead 
Time) compared to P2P for the three bundle systems are less 
than 0.6 minutes and 0.7 minutes respectively in Songpa, 
and less than 1.53 minutes and 1.38 minutes respectively in 
Dongjak, indicating a negligeable impact on customer 
satisfaction. In Table 6, Dongjak saw a longer average ODT 
compared to Songpa, resulting in longer lead times and food 
lead times in Dongjak. This suggests that the same bundling
policy may affect customer experience differently in Songpa 
and Dongjak.

In our experimental setup, approximately 10% of orders 
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are considered FLT-sensitive, requiring FLT to be shorter 
than ODT (Origin Destination Time) + 5 minutes. Figure 6 
illustrates a scatter plot of ODT and FLT for these orders. 
The red line represents FLT = ODT, and the green line 
represents FLT = ODT + 5 minutes. All orders fall between 

these two lines, indicating that FLT remains within 
acceptable limits. This demonstrates the effectiveness of the 
bundle systems even for sensitive orders, highlighting their 
ability to maintain satisfactory service levels.

Table 6: Customer-related Performance Metrics 

Instance System
ODT
(min)

LT
(min)

FLT
(min)

Increase in LT Compared to 
P2P (min)

Increase in FLT Compared to 
P2P (min)

Songpa

Static 3.36 14.88 4.00 0.60 0.69

Dynamic 3.40 14.57 3.87 0.29 0.56

Hybrid 3.39 14.76 4.01 0.48 0.70

P2P 3.31 14.28 3.31 - -

Dongjak

Static 4.22 18.02 5.54 1.53 1.38

Dynamic 4.32 17.27 5.34 0.78 1.18

Hybrid 4.26 17.62 5.54 1.13 1.38

P2P 4.16 16.49 4.16 - -

(a) Dynamic in Dongjak (b) Dynamic in Songpa

Figure 6: Food Lead Time Scatter Plot of the Time-sensitive Customer Orders. Source: Provided by Authors

6. Conclusion 

In this study, we introduce bundle systems designed with 
a classification model to efficiently compute bundles in food 
delivery platforms. We developed dynamic, static, and 
hybrid bundle systems and compared their performance 
against an enumeration approach. In the experiments 
assuming peak hours, these three systems demonstrated 
shorter computation times compared to the enumeration 
system. We conducted a comprehensive business analysis 
from the perspective of each stakeholder in the food delivery 
platform. Our findings indicate that bundling has a positive 
impact on both customers and drivers compared to the P2P 
model. Specifically, it increases drivers' income, expands 
service to more customers, and maintains comparable lead 
times to standalone deliveries. Additionally, the platform 
benefits from higher service completion rates, increased 

commissions, and improved fairness for drivers. The bundle 
systems are cost-effective and beneficial for all platform 
participants, underscoring the value of our approach. In fact, 
several food delivery platforms have already adopted bundle 
strategies, validating the feasibility of our proposed bundle 
systems. 

However, this study has several limitations. First, 
because our bundle system uses mixed integer programming, 
low computation times are not guaranteed. Future research 
should explore heuristics or alternative machine learning 
methods for improving bundle model. Second, although our 
study uses real-world data from Seoul to validate the bundle 
systems, the geographic and temporal scope of the 
experiments is somewhat limited. Future research should 
broaden the dataset to include multiple regions and varied 
timeframes to provide a more comprehensive evaluation of 
the system’s effectiveness. Third, by assuming uniform 
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driver capabilities and experiences, our model does not
reflect the actual diversity among drivers. Additionally, the 
impact of external factors such as weather conditions, traffic 
congestion, and seasonal demand variations has not been 
thoroughly explored. Future research should focus on 
developing a more comprehensive model that better reflects 
these real-world conditions. Integrating these factors would 
provide a more robust and realistic assessment of the bundle 
system. Furthermore, incorporating feedback from 
stakeholders could enhance the bundle delivery system, 
making this an important area for future research.
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