Abstract
Research Purpose : Based on artificial intelligence, this study considers learners' characteristics, learning content, and individual learning, and analyzes the collected learning data to develop a model that supports customized learning for individual learners. Research content and method : In order to achieve the research purpose, the literature was analyzed to investigate the structure of customized learning support, learning data analysis, and learning activities, and based on the investigated data, the area and detailed components of the customized learning support model were derived. did. A draft model was constructed through literature analysis, and the first expert Delphi survey was conducted on the draft model with five experts. The model was revised by reflecting the results of the first Delphi, and the validity of the revised model was verified through the second expert Delphi. The model was elaborated through expert Delphi, and the final model was constructed through this. Conclusion and Recommendation : Through research, customized learning support area, class management system area, and learning analysis data area were formed, and detailed elements were derived for each area. The results of this study provide basic data that can be used as a reference for constructing a customized learning support system based on artificial intelligence, taking into account the university's class environment.
연구 목적 : 본 연구는 인공지능을 기반으로 하여 학습자들의 특성과 학습 내용, 개인 학습을 고려하고, 수집된 학습 데이터를 분석하여 개별 학습자에게 맞춤형 학습을 지원하는 모형을 개발하는 것이다. 연구 내용 및 방법 : 연구 목적을 성취하기 위해서 문헌을 분석하여 맞춤형 학습지원, 학습 데이터 분석, 학습 활동의 구조를 조사하였고, 조사된 자료를 기반으로 하여 맞춤형 학습 지원 모형의 영역과 세부 구성 요소를 도출하였다. 문헌 분석을 통해서 모형의 초안을 구성하였고, 모형 초안은 전문가 5인을 대상으로 1차 전문가 델파이 조사를 수행하였다. 1차 델파이 결과를 반영하여 모형을 수정하였고, 수정된 모형은 2차 전문가 델파이를 통해서 모형의 타당성을 검증하였다. 전문가 델파이를 통해서 모형을 정교화하였고, 이를 통해서 최종 모형을 구성하였다. 결론 및 제언 : 연구를 통해서 맞춤형 학습지원 영역, 수업 운영 시스템 영역, 학습 분석 데이터 영역을 구성하였고, 각 영역에 세부 요소들을 도출하였다. 본 연구의 결과는 대학의 수업환경을 고려하여 인공지능을 기반으로 맞춤형 학습 지원 시스템을 구성하는데 참고할 수 있는 기초 자료를 제공한 것이다.