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Abstract  Animal-derived foods, such as meat and dairy products, are prone to spoilage 
by psychrotrophic bacteria due to their high-water activity and nutritional value. These 
bacteria can grow at refrigerated temperatures, posing significant concerns for food safety 
and quality. Psychrotrophic bacteria, including Pseudomonas, Listeria, and Yersinia, not 
only spoil food but can also produce heat-resistant enzymes and toxins, posing health 
risks. This review examines the characteristics and species composition of psychrotrophic 
bacteria in animal-derived foods, their impact on food spoilage and safety, and 
contamination patterns in various products. It explores several nonthermal techniques to 
combat bacterial contamination as alternatives to conventional thermal methods, which 
can affect food quality. This review highlights the importance of developing nonthermal 
technologies to control psychrotrophic bacteria that threaten the cold storage of animal-
derived foods. By adopting these technologies, the food industry can better ensure the 
safety and quality of animal-derived foods for consumers. 
  
Keywords  animal-derived foods, psychrotrophic bacteria, prevalence, nonthermal techniques, 
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Introduction 

Animal-derived foods, such as meat, milk, and their processed products, generally 

have high water activity and nutritional value. Therefore, they are highly susceptible to 

spoilage by microorganisms, especially pathogenic bacteria (Odeyemi et al., 2020; Saha 

et al., 2024; Tapia et al., 2020; Yuan et al., 2019). A cold chain system is the simplest way 

to control the freshness and microbiological safety of animal-derived foods. By applying 

this system, food quality is maintained by controlling the temperature at a low level 

during the entire process of harvesting fresh foods from the production site and then 

storing and transporting them to the final consumption site (Montanari, 2008; Ndraha 
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et al., 2018). However, this approach is not perfect, as some microorganisms survive and multiply even at low temperatures. 

Low-temperature storage improves food storability; however, contamination with psychrotrophic bacteria may make this 

impossible (Chen et al., 2020). 

Psychrotrophic bacteria, defined as cold-tolerant bacteria, have the ability to grow at temperatures below 7℃, such as those 

found in refrigerated conditions. These bacteria are known for causing spoilage in food products, especially animal-derived 

foods (Moyer et al., 2017; Tatini and Kauppi, 2002). Psychrotrophic bacteria can grow at low temperatures, although their 

growth is limited to a maximum temperature of approximately 20℃. Typically, these bacteria do not thrive over 35℃ 

(Kanekar and Kanekar, 2022). Thus, they appear to be a subgroup of mesophiles, whose optimum growth range is between 

30℃ to 40℃. However, they are not a subgroup of psychrophiles, which prefer much colder environments, typically below 

15℃ (Cavicchioli, 2016). During storage at low temperatures, psychrotrophic bacteria that adapt to the low temperatures 

thrive better than mesophilic bacteria, leading to an increase in their cell population (Samaržija et al., 2012; Wickramasinghe 

et al., 2019). Moreover, compared to the mesophilic bacteria in raw milk, the quantity of psychrotrophic bacteria increased by 

over 10%. Psychrotrophic bacteria can produce enzymes related to heat resistance (e.g., proteolytic enzymes, lipolytic 

enzymes, and phospholipases), some of which have antibiotic resistance or the ability to produce toxins. Thus, psychrotrophic 

bacteria proliferate at low temperatures and not only spoil food but can also be difficult to inactivate through heat treatment 

(sterilization process) and can have adverse effects on human health. 

Therefore, in this review, we aimed to determine the growth characteristics and species composition of psychrotrophic 

bacteria that are commonly observed in animal-derived foods and to check their contamination (distribution) status. In 

addition, we proposed a technique for reducing the number of psychrotrophic bacteria that can be applied to animal-derived 

food. 
 

Characteristics of Psychrotrophic Bacteria 

Psychrotrophic bacteria enter food from their mesophilic habitats and continue to grow at a slow pace in refrigerated 

environments. There are several reasons why psychrotrophic bacteria can continue to survive and grow even at low 

temperatures. First, they can maintain the activity of various enzymes involved in metabolism even under cold conditions. 

These bacteria possess enzymes that can be activated at low temperatures, and they provide thermolability and increase 

complementarity between the substrate and the active site, thereby providing high specific activity at low temperatures 

(Cavicchioli et al., 2002; Chattopadhyay, 2006; D’Amico et al., 2002). As a result, the activation energy is lowered, helping 

to maintain the substrate-enzyme reaction even at low temperatures (De Maayer et al., 2014). Second, they can maintain the 

membrane fluidity even at low temperatures due to their ability to regulate the composition of the cell membranes. The cell 

membrane transmits various signals and exchanges substances, especially nutrients. Therefore, cellular survival is highly 

dependent on the fluidity of the cell membrane (Moyer et al., 2017; Najjar et al., 2007; Wang et al., 2016). The membrane 

fluidity is determined by composition of the phospholipid bilayer comprising the cell membrane, which is odd-numbered, 

unsaturated, and anteiso fatty acids (Hagve, 1988; Yoon et al., 2015). Especially, polyunsaturated fatty acids (PUFAs) had a 

low melting point, thus controlling the amount of PUFAs at low temperatures can be a good way to maintain membrane 

fluidity (Casanueva et al., 2010; Hassan et al., 2020). Moreover, a-C15:0, an anteiso fatty acid, plays a key role in bacterial 

survival at low temperatures; for example, a-C15:0 is a major component of bacteria living in the Antarctic region 

(Chattopadhyay and Jagannadham, 2003). In addition to changes in the composition of fatty acids in the cell membrane, 

changes in various transport proteins, which play a role in transporting substances into and out of the cytoplasm, also occur in 
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the cell membrane. Psychrotrophic bacteria upregulate the expression of some of these proteins to ensure smooth transport of 

substances even at low temperatures (De Maayer et al., 2014). Third, they have or can uptake some substances that help them 

survive at low temperatures, such as antifreeze proteins (AFPs) and compatible solutes. AFPs, possess by psychrotrophic 

bacteria, which control the expression of proteins related to cold and heat shock, or by switching to a viable but nonculturable 

state (Chattopadhyay, 2006). They can prevent freezing or thawing damage to bacteria by inhibiting the growth of ice crystals 

at low temperatures (Celik et al., 2013). Psychrotrophic bacteria can respond to low temperatures by accumulating compatible 

solutes in the cytoplasm to increase the concentration of solutes and thereby increasing osmotic pressure (Casanueva et al., 

2010). For example, glycine betaine, a type of compatible solute, is a substance that Listeria monocytogenes can synthesize, 

and its synthesis becomes active at low temperatures, which can stimulate the growth of L. monocytogenes at low 

temperatures (Beumer et al., 1994; Chan and Wiedmann, 2008; Zeisel et al., 2003). It should be remembered that all of the 

previously mentioned events are regulated by gene expression. 

Psychrotrophic bacteria are the main cause of the spoilage of chilled and frozen foods derived from animals, including raw 

or cooked meat, dairy products, butter, fresh or cooked seafood, and vegetables (Wei et al., 2019). The most common 

psychrotrophic bacteria found in animal-derived food are Pseudomonas, Listeria, Yersinia, Serratia, Aerococcus, Acinetobacter, 

and Flavobacterium (Chen et al., 2020; Júnior et al., 2018; Yuan et al., 2017). Pseudomonas is the main bacterium that causes 

meat spoilage because it produces protein and fat hydrolases, biosurfactants, and colors (Rouger et al., 2018). Dhama et al. 

(2013) reported that meat and meat products, and dairy products are common sources of L. monocytogenes, an intracellular 

gram-positive bacterium that may survive and grow under refrigeration.  
 

Contamination of Animal-Derived Foods due to Psychrotrophic Bacteria 

Animal-derived foods often contaminated by psychrotrophic bacteria, including Listeria, Pseudomonas, and Yersinia. 

Numerous studies have reported cases of contamination in a variety of animal resources, including dairy products (milk and 

cheese), meat (poultry, pork, and beef), and animal-derived products (Table 1). Despite not being classified as a psychrotrophic 

bacterium, Clostridium has been commonly detected in animal-derived foods stored at low temperature. 
 

Listeria monocytogenes 

Listeria spp. have been identified in various animal-derived food sources across different regions, highlighting their 

prevalence in the food chain and their potential risks to public health. Particularly concerning for animal-derived food safety 

is the fact that L. monocytogenes can grow at refrigerated conditions. Raw milk and cheese (Akrami-Mohajeri et al., 2018; 

Costanzo et al., 2020; Rahimi et al., 2010), meats (Li et al., 2018; Oswaldi et al., 2021), and ready-to-eat (RTE) meat products 

(Calvo-Arrieta et al., 2021; Meza-Bone et al., 2023) are the most common animal-derived foods contaminated with L. 

monocytogenes. In Syria, research has shown that 11.0% of raw milk samples tested positive for Listeria spp. (Al-Mariri et 

al., 2013). In Egypt, Listeria spp. were found in cheese and raw milk at rates ranging from 3.3% to 6.7% (Ismaiel et al., 

2014). In Turkey, Kahraman et al. (2010) found that 4.8% of L. monocytogenes were detected in white cheese samples, 

whereas processed cheese samples had a detection rate of 1.4%. In Mexico, L. monocytogenes was detected in 9.3% of queso 

fresco, 12.0% of adobera, and 6.0% of panela cheese, all of which are type of fresh cheese (Beltran et al., 2015; Torres-Vitela 

et al., 2012). In South Africa, L. monocytogenes was detected in a range of meat and meat products obtained from cattle, 

pork, sheep, game meat, and poultry (Matle et al., 2019). In this study, L. monocytogenes were found in 10.1% of uncooked 

whole meat, 13.5% of RTE meat products, and 19.5% of uncooked processed meat. In Spain, Vitas and Garcia-Jalon (2004)  
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Table 1. Summary of the studies reporting the prevalence of psychrotrophic bacteria in animal-derived foods 

Microorganisms Type of foods No. of positive samples (%) Reference 

Listeria spp. Dairy products Raw sheep milk 14/62 (22.6) Rahimi et al. (2010) 

Raw cow milk 10/90 (11.1) 

Raw goat milk 4/60 (6.7) 

Cheese 17/90 (18.9) 

Ice cream 7/68 (10.3) 

Butter 2/40 (5.0) 

Raw milk 41/140 (29.2) Akrami-Mohajeri et al. 
(2018) Cheese 17/120 (14.2) 

Butter 4/100 (4.0) 

Raw milk 2/30 (6.7) Ismaiel et al. (2014) 

Raw milk 84/766 (11.0) Al-Mariri et al. (2013) 

Listeria  
monocytogenes 

Meat Pig carcass 12/430 (2.8) Oswaldi et al. (2021) 

Raw pork 104/356 (29.2) Li et al. (2018) 

Raw meat 98/525 (18.7) Kramarenko et al. (2013)

Frozen lean beef 1/30 (3.3) Ismaiel et al. (2014) 

Raw meats  
(minced pork and beef meat) 

103/295 (34.9) Vitas and Garcia-Jalon 
(2004) 

Poultry 57/158 (36.1) 

Raw processed meat 149/765 (19.5) Matle et al. (2019) 

Raw intact meat 56/557 (10.1) 

Dairy products White cheese 5/105 (4.8) Kahraman et al. (2010)

Processed cheese 1/70 (1.4) 

Queso fresco cheese 7/75 (9.3) Beltran et al. (2015) 

Adobera cheese 12/100 (12.0) Torres-Vitela et al. (2012)

Panela cheese 6/100 (6.0) 

Ready-to-eat (RTE)  
meat products 

Ham and turkey 6/507 (1.2) Lambertz et al. (2012) 

RTE milk products 13/4,901 (0.3) Kramarenko et al. (2013)

RTE meat products 135/6,746 (2.0) 

RTE meat products 59/436 (13.5) Matle et al. (2019) 

Pseudomonas spp. Dairy products Raw milk 93/103 (90.3) Marchand et al. (2012)

Raw milk 35/50 (70.0) Aziz et al. (2022) 

Milk 
(raw, n=4; pasteurized, n=8) 

6/12 (50.0) Carminati et al. (2019)

Cheese 3/20 (15.0) 

White cheese 32/140 (22.9) Arslan et al. (2011) 

Meat Chicken meat 7/15 (46.7) Mahato et al. (2020) 

Chicken meat 91/168 (54.2) Wu et al. (2023) 

Pork meat 18/91 (19.8) 
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Table 1. Summary of the studies reporting the prevalence of psychrotrophic bacteria in animal-derived foods (continued)

Microorganisms Type of foods No. of positive samples (%) Reference 

Pseudomonas spp. Meat Frozen chicken meat 69/320 (21.6) Elbehiry et al. (2022) 

Fresh beef 3/60 (5.0) Rezaloo et al. (2022) 

Frozen beef 8/60 (13.3) 

Beef 122/230 (53.0) Benie et al. (2017) 

Smoked fish 33/140 (23.6) 

Fresh fish 49/140 (35.0) 

RTE meat product Sausage 5/60 (8.3) Sofy et al. (2017) 

Luncheon meat 11/60 (18.3) 

Beef burger 1/60 (1.7) 

Frozen burger 1/25 (4.0) Hassan et al. (2020) 

Animal Fecal samples 46/704 (6.5) Ruiz-Roldán et al. (2020)

Yersinia  
enterocolitica 

Dairy products Dairy products 
(cheese, butter, and yogurt) 

6/49 (12.2) Mancini et al. (2022) 

Raw cow milk 12/44 (27.3) 

Raw goat milk 1/4 (25.0) 

Raw milk 19/446 (4.3) Jamali et al. (2015) 

Raw milk 11/50 (22.0) Ahmed et al. (2019) 

Fermented milk 6/50 (12.0) 

Pasteurized milk 2/50 (4.0) 

Ripened salted cheese 1/50 (2.0) 

Meat Chicken 132/720 (18.3) Momtaz et al. (2013) 

Chicken 37/50 (74.0) Palau et al. (2024) 

Pork 8/10 (80.0) 

Pork 11/237 (4.6) Esnault et al. (2013) 

Beef 11/210 (5.2) 

Poultry 12/202 (5.9) 

Chicken 41/190 (21.6) Soltan Dallal et al. (2010)

Beef 19/189 (10.1) 

Clostridium  
botulinum 

Honey Polish honey 5/240 (2.1) Grenda et al. (2018) 

Kazakh honey 1/197 (0.5) Maikanov et al. (2019)

Clostridium 
perfringens 

Honey Kazakh honey 18/197 (9.1) Maikanov et al. (2019)

Dairy products Raw milk 78/79 (98.7) Feligini et al. (2014) 

 Curd 79/79 (100.0) 

 Meat and meat 
products 

Beef 20/40 (50.0) Issimov et al. (2022) 

 Lamb 9/40 (22.5) 

  Ground beef 11/40 (27.5)  

Minced lamb 16/40 (40.0)  

Raw chicken 6/25 (24.0) Shaltout et al. (2017) 

Raw beef 4/25 (16.0) 
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analyzed 396 meat product samples obtained from 55 small meat-processing plants, and L. monocytogenes were detected in 

36.1% of poultry meat, 34.9% of minced pork and beef. In Quevedo, a city in Ecuador, 16.3% of L. monocytogenes was 

present in RTE meat products, including grilled hamburger meat, mortadella, and salami. The concentration of L. 

monocytogenes ranged from 4 to 6 Log CFU/g, or possibly much higher (Meza-Bone et al., 2023).  

 

Pseudomonas spp. 
Pseudomonas is a prevalent member of the microbiota in various animal-derived foods, including pork (Bruckner et al., 

2012), chicken (Elbehiry et al., 2022; Wu et al., 2023), beef (Ercolini et al., 2009), and milk (Aziz et al., 2022). Wu et al. (2023) 

identified 109 Pseudomonas aeruginosa isolates, which constituted 42.1% of 259 samples collected across six districts in 

Beijing, China. Especially, 91 isolates from chicken samples (54.2%) and 18 from pork samples (19.8%). Similarly, Mahato et 

al. (2020) described that P. aeruginosa was detected in 46.7% of chicken meat samples. Among the 370 meat and meat product 

samples analyzed by Rezaloo et al. (2022), 29 samples were contaminated with P. aeruginosa. Notably, imported frozen beef 

harbored the highest prevalence (20.0%), followed by frozen beef (13.3%) and fresh beef samples (5.0%). Benie et al. (2017) 

reported that the prevalence of P. aeruginosa among smoked fish, fresh fish, and beef samples was 23.6%, 35.0%, and 53.0%, 

respectively. Furthermore, P. aeruginosa prevalence among sausage, luncheon meat, beef burger, and frozen burger samples was 

8.3%, 18.3%, 1.7%, and 4.0%, respectively (Sheir et al., 2020; Sofy et al., 2017). In the dairy foods, P. aeruginosa was detected 

in 70.0% of milk samples and 24.0% of samples collected from a milk tank at a dairy cattle farm in Egypt (Aziz et al., 2022). 

Carminati et al. (2019) found that Pseudomonas spp. was isolated from 50.0% of milk and 15.0% of cheese samples, with 

concentrations between 3.45 and 4.05 Log CFU/mL or g. Similarly, Arslan et al. (2011) reported that 22.9% of Pseudomonas 

spp. was isolated from 140 homemade white cheese samples, with the dominant isolate being Pseudomonas pseudoalcaligenes 

(15.0%), followed by Pseudomonas alcaligenes (5.0%), P. aeruginosa (1.4%), and P. fluorescens biovar V (0.7%). Furthermore, 

certain Pseudomonas species, including potentially pathogenic ones like Pseudomonas fulva, P. aeruginosa, and Pseudomonas 

putida have been found in the fecal samples of healthy animals. A study analyzing 704 animal fecal samples identified 133 

isolates of Pseudomonas spp. belonging to 23 different species, recovered from 46 samples (6.5%; Ruiz-Roldán et al., 2020). 
 

Yersinia enterocolitica 

Yersinia, particularly Y. enterocolitica, has been isolated and found to contaminate various types of animal-derived foods, 

such as raw and undercooked pork meats, milk, and dairy products (Ali et al., 2021). Yersinia presence in animal-derived 

foods poses significant public health risks as it can cause yersiniosis, which can range from mild self-limiting gastroenteritis 

to more severe illnesses, including septicemia and yersiniosis (Hordofa, 2021). Swine serves as the main reservoir for Y. 

enterocolitica, with pathogenic strains found in swine and pork products are most commonly reported in human illnesses 

(MacDonald et al., 2012). Further food-producing animals that have been linked to Y. enterocolitica include sheep, poultry, 

and cattle. Palau et al. (2024) isolated Y. enterocolitica from 53 of 70 samples (75.7%), including 37 from 50 chicken 

(74.0%), 8 from 10 pork (80.0%), and 8 from 10 salmon (80.0%). In France, Y. enterocolitica was found in 5.9% of chicken 

and 4.6% of pork samples (Esnault et al., 2013). Furthermore, Soltan Dallal et al. (2010) recovered Yersinia spp. from 16% of 

379 samples, with 21.6% from chicken and 10.1% from beef. In the dairy foods, Y. enterocolitica was detected in 12.2% of 

dairy products made from raw milk, 27.3% of raw cow milk, and 25.0% of raw goat milk collected from Apulia and 

Basilicata regions in Southern Italy (Mancini et al., 2022). Ahmed et al. (2019) reported that Y. enterocolitica was isolated 

from raw milk and dairy products in 40% of examined samples. Notably, the highest isolation rate was 22.0% from raw milk, 
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followed by 12.0%, 4.0%, and 2.0% from fermented milk, pasteurized milk, and ripened salted cheese, respectively. 

Additionally, in Iran, Y. enterocolitica was isolated from 4.3% of bulk raw milk samples including cow, sheep, and goat milk 

(Jamali et al., 2015). 

 

Clostridium spp. 
Clostridium spp. is generally not considered psychrotrophic bacteria, however, it is notable for their ability to produce 

endospores that can endure diverse environmental conditions, including cold temperatures. Clostridium botulinum and 

Clostridium perfringens are recognized for their potential to induce foodborne illnesses through toxins or spores (Grenda et 

al., 2017). Additionally, C. botulinum can be found in honey as dormant spores. The low water activity and pH (acidic) of 

honey, which generally inhibit the growth of many bacteria, did not affect C. botulinum spores. Grenda et al. (2018) reported 

a 2.1% prevalence of C. botulinum in honey samples in Poland. Additionally, Maikanov et al. (2019) found that C. botulinum 

was isolated in only 0.5% of the samples, and C. perfringens was isolated from 18 of the 197 honey samples (9.1%). One 

incidence of newborn botulism was reported in the United Kingdom in 2001, and it seemed that the cause was powdered 

infant formula contaminated with C. botulinum spores (Brett et al., 2005). According to Barash et al. (2010), 78.0% of the 

powdered infant formula samples contained clostridial spores, specifically Clostridium sporogenes. The isolation of 

clostridial spores indicates that neurotoxic clostridial spores may be found in these products. In Italy, clostridial spores were 

detected in 99.0% of the 527 analyzed sheep milk samples. Among these samples, 86% had spore concentrations higher than 

the 1,000 spores/L (Turchi et al., 2016). Furthermore, C. perfringens was found in 98.7% of raw milk in tanks and 100.0% of 

curd samples used for Grana Padano cheese production in Northern Italy (Feligini et al., 2014). In meat and meat products, C. 

perfringens was detected in 50.0% of beef, 22.5% of lamb, 27.5% of ground beef, and 40.0% of minced lamb by Issimov et 

al. (2022). Shaltout et al. (2017) reported that C. perfringens was detected in 15.0% of beef and chicken before and after 

cooking, represented by 24.0% of raw chicken, 12.0% of cooked chicken, 16.0% of raw beef, and 8.0% of cooked beef 

samples. 

 

Reduction of Psychrotrophic Bacteria in Animal-Derived Foods 

Thermal technologies have been used to deactivate microorganisms present in animal-derived food products. However, 

these techniques have a negative effect on the nutritional and sensory values of the treated food products (Jauhar et al., 2020). 

Conventional decontamination technologies for meat and meat products include heat processing, chilled storage, vacuum 

packing, and chemical preservation. However, the use of heat during processing might reduce the nutritional value and 

sensory characteristics, while chemically treated products might show significant residue deposition (Jadhav et al., 2021). To 

eliminate pathogenic bacteria from animal-derived foods without heating and affecting the quality of the food, nonthermal 

techniques have been presented as alternatives to conventional pasteurization (Lee and Yoon, 2024). The various specific 

nonthermal techniques are described below. 
 

Use of gas 
Each microorganism has its own unique oxygen requirement, and therefore, the growth of microorganisms can be 

controlled by changing the air composition. One method of adjusting the composition of air is the modified atmosphere 

packaging (MAP). This method particularly focuses on aerobic microorganisms because it replaces oxygen in the air with 
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carbon dioxide or nitrogen (Farber et al., 2003; Kader, 1986). It not only inhibits the growth of aerobic microorganisms, but 

also prevents rancidity of fat caused by oxygen, thus it can be effectively applied to meat products containing fat. As an 
example, Y. enterocolitica and L. monocytogenes might survive in MAP foods between 0℃ to 1℃ (Barakat and Harris, 1999; 

Hudson et al., 1994). When pure nitrogen gas was injected into raw milk, the Pseudomonas growth was significantly limited, 

and when carbon dioxide was added to raw milk, the microbiological quality was maintained for a long period of time, 

making it possible to produce milk with a long shelf life (Munsch-Alatossava et al., 2010; Vianna et al., 2012; Yuan et al., 

2019). In contrast, Huang et al. (2020) reported higher concentrations of Pseudomonas in roasted chicken stored under MAP 

(40% CO2/60% N2) conditions. Also, it has limitations in that spoilage caused by lactic acid bacteria (LAB) is occasionally 

observed. LAB lowers pH and causes muscle tissue destruction and moisture lose in meat stored under high CO2 level (Wang 

et al., 2017; Wickramasinghe et al., 2019).  

Additionally, supercritical carbon dioxide (SC-CO2) can be used to control pathogenic bacteria in animal-derived foods. SC-
CO2 diffuses CO2 to lower cytoplasmic pH and extracts important components to change microbial cell membranes (Guerrero 
et al., 2017). It is currently not known how SC-CO2 exhibits bactericidal activity, potentially, might depend on variables 
including pressure, temperature, and exposure time. According to the previous studies, SC-CO2 might enhance membrane 
fluidity and permeability, as well as its ability to extract membrane components such as phospholipids (Budisa and Schulze-
Makuch, 2014; Jauhar et al., 2020). Wei et al. (1991) initially investigated the inactivation of L. monocytogenes and Salmonella 
in spiked chicken meat using SC-CO2 treatment, and 1–2 Log CFU/g of L. monocytogenes and Salmonella were reduced at 
13.7 MPa and 35℃ for 2 h. Furthermore, Ferrentino et al. (2013) reported that the growth of L. monocytogenes in dry-cured 
ham was reduced by 3 Log CFU/g at 45℃ and 12 MPa for 5 min, and by 7 Log CFU/g at 50℃ and 12 MPa for 15 min. 

The application of cold plasma treatment has generated significant attention as a low-energy, non-thermal, and eco-friendly 
technique (Koddy et al., 2021). Previous studies have shown that the application of cold plasma can extend the storage 
duration of food products by inactivating bacteria and enzymes, while maintaining the overall quality of the food (Koddy et 
al., 2021; Zhang et al., 2021). The cell membrane and enzymes are predominantly damaged by reactive nitrogen species 
(RNS) and reactive oxygen species (ROS) during cold plasma treatment (Kang et al., 2021; Liao et al., 2017). Kim et al. 
(2011) reported a decrease of about 1–2 Log CFU/g for L. monocytogenes, Esherichia coli, and Salmonella on sliced bacon 
when treated with He and He/O2 plasmas. Ulbin-Figlewicz and Jarmoluk (2014) found a notable reduction of 2 Log CFU/g 
for Y. enterocolitica within 2 min and 2 Log CFU/g for P. fluorescens after 5 and 10 min of exposure to cold plasma for beef. 

 

Lytic bacteriophages 
Bacteriophage (Phage) refers to a virus that uses bacteria as a host, and when infected with a specific bacterium, it has a 

life cycle of self-proliferating within the bacterium and lysis the bacterium (Cooper, 2016). Phages are increasingly being 

applied as a biological control method to improve the microbiological safety in the food industry. Currently, phages targeting 

bacteria such as L. monocytogenes are being sold with approval from the Food and Drug Administration (Moye et al., 2018). 

LISTEX P100 phage is one of the phages that fight against L. monocytogenes, and effectively reduced L. monocytogenes (2.5 

Log units reduction) that had been artificially contaminated in Brazilian fresh sausages (Rossi et al., 2011). Commercial 

phages based on LISTEX P100 are safe enough to be registered as GRAS (Sillankorva et al., 2012). Mohammadi et al. (2022) 

examined phages effect of C. perfringens lysis, and phages induced survival of C. perfringens in pasteurized milk and 

chicken meat. The effect of phages to lyse bacteria becomes stronger when bacteria are metabolically active, so the effect is 

better at room temperature or 37oC rather than at low temperatures (Cooper, 2016; Tomat et al., 2018). Since decreased 

metabolism of bacteria means decreased metabolism of phages, the latency period of phages may be somewhat longer at low 
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temperatures. Nevertheless, since the bacterial lytic ability of phages is clearly observed even at low temperatures (Cooper, 

2016), it may be effective in controlling the growth of psychrotrophic bacteria. 
 

High pressure processing 
High-pressure processing (HPP) is a non-thermal technique that changes protein structure, causes protein denaturation, and 

lowers enzyme activity in microorganisms in order to prevent the growth of pathogenic psychrotrophic bacteria (Hurtado et 

al., 2019; Wiśniewski et al., 2024). HPP increases the duration that various foods, including seafood, dairy products, meat 

products (RTE sliced deli meat, dry-cured meat, and hotdog products), and liquid products (fruit juices and purees), may be 

stored without spoiling. The storage duration of products preserved with this technology is a few days to a few weeks, and 

they should be kept at a temperature below 7℃ (Silva and Evelyn, 2023). Park et al. (2022) reported a significant reduction in 

L. monocytogenes in raw beef when treated with HPP for 2 to 7 min at 500 MPa and 4℃, decreasing from 3.9 to 6.5 Log 

CFU/g. In contrast, Stratakos et al. (2019) reported that extending the duration of HPP treatment from 3 to 5 min at pressure 

of 400, 500, and 600 MPa at 18℃ in raw milk only slightly increased L. monocytogenes decline from 5.7 to 5.9 Log CFU/g. 

However, HPP has several limitations, including difficulties in commercialization due to high installation and maintenance 

costs (Aganovic et al., 2017). Furthermore, HPP is ineffective against spores and certain enzymes that are resistant to 

pressure, and it may induce color changes in some animal foods (Bolumar et al., 2020; Myers et al., 2013). 
 

Ohmic heating 
Ohmic heating is an innovative technique for heating food substances promptly, uniformly, and efficiently and is effective 

at inactivating microorganisms (Richa et al., 2017). The importance of the relationship between metallic prosthetic groups 

(polyphenol oxidase, lipoxygenases, and alkaline phosphatase) and electric current was emphasized by Makroo et al. (2020). 

Ohmic heating, depending on variables such as electrical conductivity, time, and electric field strength, effectively eliminates 

pathogens (L. monocytogenes, E. coli, and Salmonella) and spoilers (Leuconostoc mesenteroides and P. aeruginosa) in 

animal-derived foods (Lee et al., 2012; Saxena et al., 2016). Salmonella in baby formula and Streptococcus thermophilus in 

milk were reduced by about 5 Log CFU/mL at 60℃ in 2.91 min and 15 min, respectively, using ohmic heating, which 

demonstrated a more intense inactivation rate than conventional heating (Pires et al., 2021; Sun et al., 2008). Furthermore, 

ohmic heating reduced P. aeruginosa in meatball samples by 3 Log CFU/g at 125℃ for 5 min (Mitelut et al., 2011).  
 

Ultraviolet light 
Ultraviolet (UV) light, with wavelengths ranging from 100 to 400 nm (Barba et al., 2017), has been used to increase the 

storage duration of various animal-derived foods by bactericidal inactivation and enzyme inhibition (Manzocco et al., 2009; 

Monteiro et al., 2020; Visuthiwan and Assatarakul, 2021). UV light can deactivate microbial enzymes through: (1) UV radiation 

is absorbed by chromophore groups or proteins, which produces excited states or radicals, and (2) proteins can be indirectly 

oxidized by singlet oxygen, which is formed from other chemicals that absorb light energy. These actions can cause oxidative 

stress, leading to alterations in the three-dimensional conformation of proteins and a decrease in their catalytic activity (Lante et 

al., 2013). UV-C light decreased the counts of L. monocytogenes, Pseudomonas spp., and β-lactamase producing bacteria from 

1.1 to 2.8 Log CFU/cm2 at 0.05 to 3 J/cm2 (10 mW/cm2, from 5 to 300 s; McLeod et al., 2018). Additionally, Brochothrix 

thermosphacta and Y. enterocolitica counts were decreased by up to 1.1 Log CFU/g and 0.8 Log CFU/g, respectively, by UV-C 

light during refrigerated storage at concentrations of 408 and 4,080 mJ/cm2 (Reichel et al., 2020). 
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Conclusion  

Psychrotrophic bacteria present a significant challenge in maintaining the safety and quality of animal-derived foods during 

storage and transportation, particularly under refrigerated conditions. Understanding the characteristics and prevalence of 

these bacteria as well as their contamination patterns in various animal resources is crucial for implementing effective control 

measures. Nonthermal techniques offer promising alternatives to traditional thermal techniques for reducing psychrotrophic 

bacterial contamination in animal-derived foods while preserving their sensory and nutritional properties. Further research 

and implementation of these technologies are essential to ensure the microbiological safety and storage duration of animal-

derived products in the food industry. 
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