DOI QR코드

DOI QR Code

RTT-Enabled Doppler Positioning in LEO-PNT Systems

저궤도 위성 항법 시스템에서의 왕복시간 및 도플러 천이 기반 위치 측위 기법 설계

  • Duhui Yang (Department of Electronic Engineering, Hanyang University) ;
  • Jeongwan Kang (Department of Electronic Engineering, Hanyang University) ;
  • Minsoo Jeong (Department of Electronic Engineering, Hanyang University) ;
  • Sunwoo Kim (Department of Electronic Engineering, Hanyang University)
  • Received : 2024.08.14
  • Accepted : 2024.08.27
  • Published : 2024.09.15

Abstract

In this paper, we propose a round trip time (RTT)-enabled Doppler-based positioning method considering the low earth orbit (LEO) satellite visibility restriction. Doppler-based positioning typically requires visibility to at least eight satellites, which is often unfeasible due to the limited coverage of LEO satellites, as beamforming technique is applied to current LEO satellites. To solve this problem, we utilize the RTT measurements, assuming that a communication link exists between the user equipment (UE) and LEO satellites. We employ the Newton-Raphson method to estimate the UE position with RTT and Doppler measurements. We analyze the positioning performance of the considered framework via simulation, demonstrating its performance in 3D positioning errors under varying satellite numbers and measurement errors.

Keywords

Acknowledgement

이 연구 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. NRF-2023R1A2C3002890).

References

  1. Causa, F., Renga, A., & Grassi, M. 2017, Ionosphere-gradient based filtering approach for precise relative navigation in LEO, In 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 21-23 June 2017, Padua, Italy, pp.56-61. https://doi.org/10.1109/MetroAeroSpace.2017.7999538
  2. Du, Y., Qin, H., & Zhao, C. 2024, LEO satellites/INS integrated positioning framework considering orbit errors based on FKF, IEEE Transactions on Instrumentation and Measurement, 73, 5501714. https://doi.org/10.1109/TIM.2024.3369693
  3. Dureppagari, H. K., Saha, C., Dhillon, H. S., &. Buehrer, R. M. 2023, NTN-based 6G localization: Vision, role of LEOs, and open problems, IEEE Wireless Communications Magazine, 30, 44-51. https://doi.org/ 10.1109/MWC.007.2300224
  4. Ferre, R. M., Lohan, E. S., Kuusniemi, H., Praks, J., Kaasalainen, S., et al. 2022, Is LEO-based positioning with mega-constellations the answer for future equal access localization?, IEEE Communications Magazine, 60, 40-46. https://doi.org/10.1109/MCOM.001.2100841
  5. Guo, F., Yang, Y., Ma, F., Zhu, Y., Liu, H., et al. 2023. Instantaneous velocity determination and positioning using Doppler shift from a LEO constellation. Satellite Navigation, 4, 9. https://doi.org/10.1186/s43020-023-00098-2
  6. Hashim, I. S. M., Al-Hourani, A ., & Ristic, B. 2022, Satellite localization of IoT devices using signal strength and Doppler measurements, IEEE Wireless Communications Letters, 11, 1910-1914. https://doi.org/10.1109/LWC.2022.3187065
  7. Humphreys, T. E., Iannucci, P. A., Komodromos, Z. M., & Graff, A. M. 2023, Signal structure of the Starlink Ku-band downlink, IEEE Transactions on Aerospace and Electronic Systems, 59, 6016-6030. https://doi.org/10.1109/TAES.2023.326810
  8. Kassas, Z. M., Khairallah, N., & Kozhaya, S. 2024, Ad astra: Simultaneous tracking and navigation with megaconstellation LEO satellites, IEEE Aerospace and Electronic Systems Magazine (Early Access), 1-19. https://doi.org/10.1109/MAES.2023.3267440
  9. Khalife, J. J. & Kassas, Z. M. 2019, Receiver design for Doppler positioning with LEO satellites, In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 12-17 May 2019, Brighton, UK, pp.5506-5510. https://doi.org/10.1109/ICASSP.2019.8682554
  10. Khalife, J., Neinavaie, M., & Kassas, Z. M. 2021, Blind Doppler tracking from OFDM signals transmitted by broadband LEO satellites, In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 25-28 April 2021, Helsinki, Finland, pp.1-5. https://doi.org/10.1109/VTC2021-Spring51267.2021.9448678
  11. Khalife, J., Neinavaie, M., & Kassas, Z. M. 2022, The first carrier phase tracking and positioning results with Starlink LEO satellite signals, IEEE Transactions on Aerospace and Electronic Systems, 58, 1487-1491. https://doi.org/10.1109/TAES.2021.3113880
  12. McLemore, B. & Psiaki, M. L. 2022, Navigation using Doppler shift from LEO constellations and INS data, IEEE Transactions on Aerospace and Electronic Systems, 58, 4295-4314. https://doi.org/10.1109/TAES.2022.3162772
  13. Nawaz, S. J., Cianca, E., Rossi, T., & De Sanctis, M. 2023, Round Trip Time (RTT) and Doppler Measurements for IoRT Localization by a Single-Satellite, IEEE Communications Letters, 28, 528-532. https://doi.org/10.1109/LCOMM.2023.3348156
  14. Prol, F. S., Ferre, R. M., Saleem, Z., Valisuo, P., Pinell, C., et al. 2022, Position, navigation, and timing (PNT) through low earth orbit (LEO) satellites: A survey on current status, challenges, and opportunities, IEEE Access, 10, 83971-84002. https://doi.org/10.1109/ACCESS.2022.3194050
  15. Prol, F. S., Bhuiyan, M. Z. H., Kaasalainen, S., Lohan, E. S., Praks, J., et al. 2024, Simulations of Dedicated LEO-PNT Systems for Precise Point Positioning: Methodology, Parameter Analysis, and Accuracy Evaluation, IEEE Transactions on Aerospace and Electronic Systems (Early Access). https://doi.org/10.1109/TAES.2024.3404909
  16. Psiaki, M. L. 2021, Navigation using carrier Doppler shift from a LEO constellation: TRANSIT on steroids, Navigation, 68, 621-641. https://doi.org/10.1002/navi.438
  17. Shi, C., Zhang, Y., & Li, Z. 2023, Revisiting Doppler positioning performance with LEO satellites, GPS Solutions, 27, 126. https://doi.org/10.1007/s10291-023-01466-w
  18. Stock, W., Schwarz, R. T., Hofmann, C. A., & Knopp, A. 2024, Survey on Opportunistic PNT With Signals from LEO Communication Satellites, IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2024.3406990
  19. Wang, D., Qin H., & Huang, Z. 2023, Doppler Positioning of LEO Satellites Based on Orbit Error Compensation and Weighting, IEEE Transactions on Instrumentation and Measurement, 72, 5502911. http://doi.org/10.1109/TIM.2023.3286001
  20. Ypma, T. J. 1995, Historical development of the Newton-Raphson method, SIAM review, 37, 531-551. http://www.jstor.org/stable/2132904