Original Article Clin Shoulder Elbow 2024;27(2):141-148 https://doi.org/10.5397/cise.2023.01088 eISSN 2288-8721 # Does the polarity of radial head arthroplasty affect functional outcomes? A systematic review and meta-analysis Kofi Agyeman, Arya Minaie, Seth D. Dodds Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL, USA **Background:** Radial head arthroplasty allows a high degree of customizability, and implant polarity has emerged as an important variable. The purpose of this meta-analysis was to evaluate differences in functional and clinical outcomes between patients receiving monopolar and bipolar radial head prosthetic implants. **Methods:** A systematic review and meta-analysis were employed, and 65 articles were identified in three databases. Twelve articles contained non-English or insufficient text and were consequently excluded, and 20 others did not contain sufficient data or follow-up. The remaining 33 articles were qualitatively and quantitatively reviewed. **Results:** In total, 33 populations were identified, with 809 unduplicated patients: 565 with monopolar and 244 with bipolar implants. In these respective patients, the mean follow-up was 40.2 and 56.9 months. Average Mayo Elbow Performance Score were 86.7 and 87.4 (P=0.80), respectively; average Disability of the Arm, Shoulder, and Hand scores were 17.9 and 14.7 (P=0.47), and average final flexion/extension arcs were 119.4° and 118.7° (P=0.48). Revision rates were 4.07% and 6.56%, while complication rates were 19.65% and 20.08% in the respective monopolar and bipolar patients. These increased relative risks associated with bipolar implants were not significant. **Conclusions:** Radial head implant polarity does not appear to affect functional outcomes. While bipolar prosthetic design may increase the risks of revision and complications, the increases were not significant. Level of evidence: IV. Keywords: Arthroplasty; Bipolar; Monopolar; Radial head arthroplasty; Radial head # INTRODUCTION Recent trends and studies have suggested that radial head arthroplasty is a preferred option in treatment of comminuted radial head fractures not amenable to open reduction and internal fixation, and that it is superior to radial head resection [1]. When deciding arthroplasty options, surgeons may select monopolar or bipolar radial head arthroplasty. The polarity of this implant has emerged as an area of controversy [1-3], and there is currently little clarity as to which type may be superior. A monopolar radial head prosthesis is fixed between the head and the neck, while bipolar implants contain an articulating head/neck segment that permits greater biomechanical freedom. Both monopolar and bipolar implants have demonstrated the ability to restore valgus stability to the elbow in several biomechanical and clinical studies [2-5]. Bipolar radial head prostheses were first introduced by Judet in 1988, serving as an alternative to the original monopolar design [2-3,6]. Bipolar implants allow increased motion of the prosthetic radial head, theoretically enabling a more congruent association of the radiocapitellar joint. In addition, the increased articu- Received: December 9, 2023 Revised: January 8, 2024 Accepted: January 24, 2024 Correspondence to: Arya Minaie Department of Orthopaedics, University of Miami, Miller School of Medicine, 1120 NW 14th St, Suite 1263 Miami, FL 33136, USA Tel: +1-305-326-6560, E-mail: aryaminaie@gmail.com, ORCID: https://orcid.org/0000-0002-7925-2790 © 2024 Korean Shoulder and Elbow Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. www.cisejournal.org lation of the head has been proposed to decrease stress at the implant-bone interface [4,7]. However, several complications have been noted with bipolar designs, including aseptic loosening and, importantly, radiocapitellar instability [6,8-10]. A bipolar articulation may also lead to polyethylene or other mechanical wear between the head and neck of the prosthesis. Specifically, conflicting data have been found in bipolar implant use in patients with elbow dislocation [1]. The purpose of this meta-analysis is to evaluate differences in functional and clinical outcomes between patients receiving monopolar or bipolar radial head prosthetic implants. We hypothesized that patients who undergo radial head arthroplasty with a monopolar prosthesis would have significantly fewer complications, loosening, and instability events related to the articulating prosthesis irrespective of indication. # **METHODS** A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three authors conducted the search independently using PubMed, Embase, and Medline databases. The electronic search citation algorithm used was: (radial head) AND (arthroplasty) NOT (shoulder) NOT (knee) NOT (hip). Inclusion demanded full-text studies, written in English, with level I-IV evidence. All references were cross- referenced to ensure they had already been reviewed. The search resulted in 65 articles with no duplicates (43 PubMed, 22 Embase). Twelve studies were excluded as they were not in English or full text, and an additional 20 populations were excluded due to lack of appropriate data; some studies had duplicate data sets, others lacked the standard 24 months of mean follow-up, and others did not explicitly identify specific implant design (monopolar or bipolar). This left 33 studies to be included in this review. All populations underwent radial head arthroplasty for a variety of indications. There were no requirements for rehabilitation for studies to be included. Populations were separated into monopolar and bipolar groups for further analysis. The variables collected from each study were year of publication, country, level of evidence, study design, inclusion period, number of patients, number of patients lost to follow-up, mean follow-up, mean age, numbers of men and women included, indication for surgery, type of fixation, material type used, modularity, number of revisions, revision rate, complications, and complication rate, as well as well-validated outcome measurements. These validated outcome measurements were the Mayo Elbow Performance Score (MEPS), the Disability of the Arm, Shoulder, and Hand (DASH) score, and the mean Flexion/Extension arc. Continuous variables—MEPS, DASH score, and flexion/extension arc—were reported as standardized mean differences when available. Dichotomous variables—revision and complication rates—were reported using risk ratios. With the high degree of heterogeneity among the data sets used, a random effects model was used. We assigned statistical significance to P-value < 0.05. # **RESULTS** A total of 809 patients (monopolar = 565, bipolar = 244) was identified in the 33 populations. Mean follow-up was 45.8 months (monopolar = 40.2, bipolar = 56.9). Most populations (54.5%) reported "fractures" as the indication for radial head arthroplasty. Most studied populations were retrospective (87.8%) (Tables 1 and 2) [8,10-39]. Outcomes were described using the following validated metrics: DASH score, MEPS, and flexion-extension arcs (Table 3). MEPS was reported by 84.8% of the 33 populations (monopolar = 86.3%, bipolar = 81.8%). The total combined average of the MEPS was 86.9, and no statistically significant difference was found between the groups (monopolar = 86.7, bipolar = 87.4; 95% CI, -5.0 to 3.5; P = 0.80). The DASH score was reported by fewer populations, in only 45.4% (monopolar = 45.5%, bipolar = 45.4%). There was no overall mean statistical difference reported between the two groups (overall = 16.8, monopolar = 17.9, bipolar = 14.7; 95% CI, -3.8 to 10.2; P = 0.47). All but three populations reported mean flexion-extension arc (overall = 87.9%, monopolar = 86.4%, bipolar = 90.9%). No statistical difference in ROM arc was reported among the groups (overall = 119.1, monopolar = 119.4° , bipolar = 118.7° ; 95% CI, -8.5 to 9.8; P = 0.48). In addition to these functional metrics, revision rates and complications were also calculated (Table 3). An overall revision rate of 4.82% was found, with a monopolar rate of 4.07% and bipolar rate of 6.56%. While a 61% increased risk for revision was associated with bipolar implants, this increase was not significant (relative rate [RR]: monopolar = 0.76, bipolar = 1.31; 95% CI, 0.86 to 9.8; P = 0.13). The complication rate of the combined populations was 19.78% (monopolar = 19.65%, bipolar = 20.08%), with a 2% not significantly increased risk with bipolar implants (RR monopolar = 0.98, bipolar = 1.02; 95% CI, 0.76 to 1.38; P = 0.89). The most frequently reported complications of monopolar implants were ulnar nerve palsies, followed by stiffness and wound infection. For bipolar implants, the most commonly reported complications were ulnar nerve palsies, followed by heterotopic ossification and stiffness. (Continued to the next page) Table 1. Outcomes of monopolar cohort | | | | 1 |--|-----------|-------------------------------|-----------------|---------------------|--------------------------|---|----------------------------|---------------------|--------|----------|--|--|-----------------------------------|-----------------|--------|------------------|------------------------------------|----------|--------------------|-----------|----------------------------------| | Study | Country | Level of
evidence
(I-V) | Study
design | Inclusion
period | Number
of
patients | Number
of patients
lost to
follow-up | Mean
follow-
up (mo) | Mean
age
(yr) | Male F | emale | Female Indication | Type of
fixation | Material _l
type | Modularity MEPS | | DASH ex
score | Flexion/
extension I
arc (°) | Revision | Revision (rate (%) | Compli- | Complication
tion
rate (%) | | Moro et al. (2001) | Canada | 2 | Retrospective | NR | 27 | ю | 39 | 54 | 11 | 13 | Fractures F
only | Fixed: press-fit (Richards Metal
Radial Head by Smith
and Nephew) | | Monoblock | 80.0 | 17.0 | 148 | 0 | 0 | 9 | 0.2 | | Chapman et
al. (2006)
[12] | USA | 2 | Retrospective | 1996–
2000 | 16 | 7 | 37 | 20 | 6 | ~ | Heteroge- F
neous
popula-
tion | Fixed: press fit
(Solar by Stryker) | Metal
(vital-
lium) | Modular | 6.98 | 27.5 | 115 | 0 | 0 | 7 | 0.1 | | Lim et al. (2008) [13] | Singapore | 2 | Retrospective | 2001–
2005 | 9 | 1 | 29.7 | 53 | 7 | 4 | Fractures F
only | Fixed: cemented (Vitalli- Metal
um/Howmedica) | | Monoblock | 78.4 | 13.6 | 100 | 0 | 0 | Е | NR
R | | Heijink et al.
(2010)
[14] | USA | N | Retrospective | 1998–
2002 | ∞ | 0 | 36 | 38 | 4 | 4 | Chronic F
es-
sex-lo-
presti
lesions | Fixed: cemented (6), press-fit (2); Implants: avanta, custom avanta, judet | Metal | Monoblock | 71.0 | N. | 129 | īC | 9.0 | rυ | 9.0 | | Katthagen et Germany
al. (2013)
[15] | Germany | 2 | Retrospective | 2007–
2011 | 29 | 7 | 25 | 09 | ∞ | 23 | Heteroge- F
neous
popula-
tion | Fixed press fit
(Radial Head by
Corin) | Metal | Monoblock 87.2 | 87.2 | NA
NA | 108.9 | r. | 0.2 | 11 | 0.4 | | Sarris et al.
(2012)
[16] | Greece | 2 | Retrospective | NR | 32 | 0 | 27 | 54 | 20 | 12 | Fractures F
only | Fixed: expandable stem
(MoPyC by Tornier) | Metal
(w/py-
rocar-
bon) | Modular | Z
Z | NA
NA | 130 | 0 | 0 | ю | 0.1 | | El Sallakh
et al.
(2013)
[17] | Egypt | 72 | Retrospective | 2007– | 12 | 7 | 42 | 39 | rv | ~ | Fractures F
only | Fractures Fixed: press fit (MARHP, only Acumed) | Metal | Modular | 92.0 | 12.0 | 115 | 0 | 0 | 0 | 0 | | Ricón et al. (2012) [18] | Spain | 2 | Retrospective | 2002-
2008 | 28 | 0 | 32 | 52 | 11 | 17 | Fractures F
only | Fixed: expandable stem
(MoPyC, Tornier) | Pyrocar-
bon | Modular | 92.0 | Ä | 105 | 2 | 0.1 | 19 | 0.7 | | Berschback
et al.
(2013)
[19] | USA | 72 | Retrospective | 2004– | 13 | 0 | 33 | 94 | ∞ | rv | Essex-lo- F
presti
injuries | Fixed press-fit and cemented (Anatomic
RHS by Acumed) | Metal | Modular | 92.0 | 13.3 | 127 | NR | NR | XX
X | N.
N. | | Mou et al.
(2015)
[20] | China | 2 | Retrospective | 2008–
2011 | 12 | 0 | 60.8 | 41 | 9 | 9 | Fractures F
only | Fixed: press fit
(Uncemented;
Acumed AARHS) | Metal | Modular | N
N | 11.9 | 130 | 0 | 0 | 0 | 0 | | Levy et al. (2016) [21] | USA | 2 | Retrospective | 2007–
2014 | 15 | 4 | 26 | 62 | 6 | 9 | Fractures F
only | Fixed: press fit | Metal | Modular | 85.0 | NA
NA | 124 | 7 | 0.1 | 4 | 0.3 | | Gauci et al.
(2016)
[22] | France | 2 | Retrospective | 2006–2013 | 52 | 13 | 46 | 52 | 30 | 35 | Heteroge- F
neous
popula-
tion | Heteroge- Fixed: press fit (modular Metal neous pyrocarbon radial popula- head prosthesis; tion MoPyC, BioProfile) by Tournier | | Monoblock | 0.96 | NR | 145 | 0 | 0 | 11 | 0.2 | | Ashwood et
al. (2004)
[23] | Australia | 2 | Retrospective | 1996– | 16 | 0 | 33.6 | 45 | ∞ | ∞ | Fractures U | Unfixed: smooth intentional loose fit (Evolve by Wright Med) | Metal | Modular | 87.0 | Ä | NR | 0 | | 9 , | NN
N | (Continu | timing to | the next | (and the | | ٦ | | |-----------|---| | 7110 | | | ontinited | | | 5 | | | (| | | 7 | | | N | 3 | | 2 | | | Table 1. Communed | nimiaca |---|---------|-------------------------------|-----------------|---------------------|--------------------------|---|----------------------------|---------------------|--------|-------|------------------------------|--|------------------|-----------------|-------|----------|------------------------------------|----------|--------------------|-------------------|-------------------------------| | Study | Country | Level of
evidence
(I-V) | Study
design | Inclusion
period | Number
of
patients | Number
of patients
lost to
follow-up | Mean
follow-
up (mo) | Mean
age
(yr) | Male F | emale | Female Indication | Type of fixation | Material
type | Modularity MEPS | | DASH | Flexion/
extension]
arc (°) | Revision | Revision (rate (%) | Compli-
cation | Complica-
tion
rate (%) | | Wretenberg et al. (2006) [24] | Sweden | NA. | Retrospective | 1994–
2001 | 22 | 4 | 44.4 | 52 | 11 | | Fractures U | Unfixed: smooth intentional loose fit (Radius
Head Component by
Link) | Metal | Modular | N. N. | XX | 115 | 0 | 0 | XX | NR | | Doornberg
et al.
(2007)
[25] | USA | 2 | Retrospective | N. N. | 27 | 10 | 40 | 52 | 13 | 14 | Fractures U | Unfixed: smooth intentional loose fit (Evolve by Wright) | Metal | Modular | 85.0 | 17.0 | 111 | 2 | 0.1 | 7 | NA
N | | Chien et al. (2010) [26] | Taiwan | 2 | NR | 2002- | 13 | 0 | 38.3 | 37 | 6 | 4 | Heteroge- Uneous popula-tion | Unfixed: smooth intentional loose fit (Evolve by Wright Med) | Metal | Modular | 86.9 | XX
XX | 120.3 | 0 | 0 | 7 | 0.2 | | Muhm et al. Germany (2011)
[27] | Germany | NR | Retrospective | 2001– | 25 | 0 | 61.2 | 59 | 12 | 13 | Heteroge- Uneous popula-tion | Unfixed: smooth intentional loose fit
(Evolve) | Metal | Modular | 85.2 | 24.9 | 111.6 | Ä | Ä | rV | 0.2 | | Chen et al. (2011) [28] | China | NA. | Prospective | 2004– | 53 | 0 | 33.6 | | 34 | Ξ. | Heteroge- Uneous popula-tion | Unfixed: uncemented
loose fit (Wright Med-
ical Technology) | Titani-
um | Modular | 92.1 | XX
XX | N | Ä | Ä | 8 | 0.1 | | Watters et
al. (2014)
[29] | USA | Z | Retrospective | 1996–
2008 | 30 | 4 | 24 | 48 | 16 | 14 | Terrible Triad injuries | Unfixed: smooth intentional loose fit (Evolve) | Metal | Modular | 0.06 | 15.7 | 106 | 8 | 0.1 | 2 | 0.1 | | Moghadd-
am et al.
(2016)
[30] | Germany | 2 | Retrospective | 2001– | 82 | 10 | 41.5 | 55.9 | 35 | 40 | Fractures U | Unfixed: smooth intentional loose fit
(Evolve) | Metal | Modular | 83.3 | 26.1 | 119.2 | 8 | 0 | 18 | 0.2 | | Yan et al.
(2015)
[31] | China | NA. | Prospective | 2005- | 20 | 0 | 36 | 37 | 11 | 6 | Fractures U | Unfixed: smooth intentional loose fit, uncemented (Radius Head
Component by Link) | Metal | Monoblock | 85.8 | XX
XX | 101.4 | - | 0.1 | 4 | 0.2 | | Marsh et al.
(2016)
[32] | Canada | Ħ | Retrospective | 2000– | 55 | 17 | 86 | 61 | 21 | 34 | Heteroge- Uneous popula-tion | Unfixed: smooth intentional loose fit (Evolve by Wright Med) | Metal | Modular | 91.0 | XX
XX | 126 | 0 | 0 | X
X | NA
R | | Monopolar
results
(sum) | | | | | 565 | 72 | 40.2 | 50.0 | 293 | 293 | | | | | 86.67 | 17.90 | 119.37 | 23 | 4.07 | 111 | 19.65 | MEPS: Mayo Elbow Performance Score, DASH: Disability of the Arm, Shoulder, and Hand, NR: not recorded. Table 2. Outcomes of bipolar cohort | | | 4 |--|------------------|-------------------------------|---------------------|---------------------|-----------------------|---|---------------------------|------------------|---------|----------|---|---|------------------|-----------------|---------|------|---|----------|----------------------|--------------|--------------------------| | Study | Country | Level of
evidence
(I-V) | Study | Inclusion
period | Number
of patients | Number
of patients
lost to
follow-up | Mean
follow-up
(mo) | Mean age
(yr) | Male Fe | emale Is | ndication | Mean age $_{ m Male}$ Male Female Indication Type of fixation $_{ m Iyp}$ | Material
type | Modularity MEPS | | DASH | Flexion/
extension Revision
arc (°) | Revision | Revision
rate (%) | Complication | Complication
rate (%) | | Brinkman et
al. (2005)
[8] | Holland | IV | Restro-
spective | 1999– | 11 | 0 | 24 | 43 | ∞ | <i>ا</i> | Fractures only | Fixed: cement-
ed (Judet
CRF II by
Tornier) | Metal | Modular | NR
R | Ä | Ä | 7 | 0.2 | 4 | 0.4 | | Dotzis et al.
(2006) [33] | France | N | Restro-
spective | 1992–
2003 | 12 | 7 | 63 | 44.8 | 10 | 4
H | Fractures lonly | Fixed: cement-
ed (Judet by
Tornier) | Metal | Modular | NR | 23.9 | 126 | 0 | 0.0 | | 0.1 | | Popovic et al. (2007) [34] | Belgium | NR | Pro-
spective | 1994– | 51 | 4 | 101 | 51 | 32 | 19 E | Fractures lonly | Fixed: cement-
ed (Judet by
Tomier) | Metal | Modular | 83.0 | Ä | 112 | 1 | 0 | NR | NR | | Burkhart et
al. (2010)
[35] | Germany | IZ | Restro-
spective | 1997–2000 | 17 | 7 | 106 | 44.1 | 14 | 3
H | Heteroge- I
neous
popula-
tion | Fixed: cement-
ed (Judet by
Tornier) | Metal | Modular | 8.06 | 9.8 | 103 | - | 0.1 | NN | NR | | Celli et al.
(2010) [36] | Italy | N | Restro-
spective | 2000- | 16 | 0 | 41.7 | 46.1 | 11 | 5
E | Fractures I
only | Fixed: cement-
ed (Judet by
Tornier) | Metal | Modular | 89.4 | 11.4 | 117 | 0 | 0 | | 0.4 | | Allavena et al.
(2014) [37] | France | N | Restro-
spective | 2002- | 22 | 0 | 50 | 4 | 15 | 7 T | Terrible I
Triad
injuries | Fixed: cemented (Guepar
by DePuy) | Metal | Modular | 79.0 | ξ. | 100 | 9 | 0.3 | 14 | 9.0 | | Heijink et al.
(2016) [14] | Nether-
lands | \mathbb{N} | Retro-
spective | 2005-
2012 | 25 | - | 50 | 55 | ^ | 18 E | Fractures lonly | Fixed: cemented | Metal | Modular | 9.68 | N. | 129 | 1 | 0 | | 0.3 | | Kodde et al.
(2016) [38] | Nether-
lands | ≥ | Retro-
spective | 2007– | 30 | С | 48 | 48 | 6 | 21 E | Fractures lonly | Fixed: cement-
ed (Judet by
Tornier) | Metal | Modular | 87.9 | Ä | 126 | ю | 0.1 | 11 | 0.4 | | Viveen et al. (2017) [39] | Nether-
lands | \geq | Prospec-
tive | 2006–
2013 | 16 | 0 | 75 | 49 | 7 | 14 E | Fractures lonly | Fixed: cement-
ed (Judet by
Tornier) | Metal | Modular | 83.1 | Ä | 127 | 0 | 0 | rv | 0.5 | | Zunkiewicz
et al.
(2012)
[10] | USA | N | Restro-
spective | 2004- | 30 | 4 | 34 | N. | 13 | 21 H | Heteroge- I
neous
popula-
tion | Unfixed:
smooth in-
tentional
loose fit (Kat-
alyst) | Metal | Modular | 92.0 | 13.8 | 126 | 7 | 0.1 | NR | N.
R. | | Berschback et
al. (2013)
[19] | USA | N | Retro-
spective | 2004- | 14 | ~ | 33 | 46 | 9 | ж
ш | Essex-Lo- 1
presti
injuries | Unfixed:
smooth inten-
tional loose fit
(Katalyst by
Integra) | Metal | Modular | 92.0 | 14.6 | 121 | NR | X
X | NR | NR | | Bipolar group (sums) | | | | | 244 | 23 | 56.9 | 47.1 | 127 | 123 | | | | | 87.4 | 14.7 | 118.7 | 16 | 92.9 | 49 | 20.08 | MEPS: Mayo Elbow Performance Score, DASH: Disability of the Arm, Shoulder, and Hand, NR: not recorded. **Table 3.** Cohort comparisons in regards to functional and clinical outcomes | Variable | Monopolar | Bipolar | 95% CI | P-value | |-----------------------------------|-----------------|------------------|--------------|---------| | Follow-up (mo) | 40.2 ± 16.2 | 56.9 ± 27.0 | - | - | | MEPS | 86.7 ± 5.8 | 87.4 ± 4.6 | -5.0 to 3.5 | 0.801 | | DASH score | 17.9 ± 6.0 | 14.7 ± 5.5 | -3.8 to 10.2 | 0.472 | | Flexion/extension arc (°) | 119.4 ± 13.2 | 118.7 ± 10.5 | -8.5 to 9.8 | 0.477 | | Revision rate (relative risk) | 0.62 | 1.61 | 0.86 to 2.99 | 0.132 | | Complication rate (relative risk) | 0.98 | 1.02 | 0.76 to 1.38 | 0.886 | Values are presented as mean \pm standard deviation unless otherwise indicated. CI: confidence interval, MEPS: Mayo Elbow Performance Score, DASH: Disability of the Arm, Shoulder, and Hand. # **DISCUSSION** Radial head arthroplasty involves several procedural variables, including the design option of using a non-articulating, "mono-" or "unipolar" implant versus a jointed, "bipolar" implant. While some studies support bipolar prostheses [2,4,10,36], citing their more congruent, dynamic capitellar articulation, others report their heightened incidence of unique complications and suboptimal performance compared to monopolar [2,3,6,40-42]. The purpose of this study was to determine if any significant advantage is offered by either implant in terms of functional outcomes, revision, and complications. Our data suggest that there is not. Several investigations support the apparent clinical equivalency of monopolar and bipolar prosthetic design. Rotini et al. [5] noted no differential superiority when comparing results functionally, clinically, and radiographically at 2 years of follow-up. Berschback et al. [19] found no significant difference in terms of motion, strength, pain, and functional outcome. Others [7,8,10,35,36] have noted satisfactory to promising outcomes in consistent case series of bipolar RHA prostheses over 2- to 9-year follow-up. Notably, Sershon et al. [43] have recently reported 16 bipolar arthroplasty cases with excellent 10-year results in terms of functional outcomes, range of motion, stability, and implant survivability. However, some cadaveric investigations suggest challenges with the performance of bipolar articulation at the radiocapitellar joint. For example, Moon et al. [6] suggest a bipolar implant's propensity for dislocation by demonstrating their lower force requirement before posterior subluxation compared to both monopolar prostheses and anatomic radial heads. These results correlate with those of Chanlalit [41,42], although their specimens were compromised by significant soft tissue dissection. Given these biomechanical findings, many surgeons are concerned about radiocapitellar instability and potential dislocation as a unique complication of the bipolar design [2]. The quality of lateral collateral ligament repair and soft tissue balancing is difficult to control in clinical studies. As a result, this point is a distinct limitation when attempting to differentiate superiority of one polarity design over another. While indications for radial head arthroplasty may play a role in implant outcomes, a study from Antoni et al. [1] that investigated polarity in the setting of fracture dislocations found no differences in outcomes between those with terrible triad injuries, Monteggia type injuries, transolecranon dislocations, and divergent dislocations. They found no differences at over two years of follow-up of 18 patients treated with bipolar implants and 40 with monopolar implants for stability, complications, revision rates, range of motion, MEPS, and radiographic parameters. Their findings are similar to those of this study, further supporting some role of indications such as concurrent dislocation. They did observe a correlation between high implant positioning and postoperative instability (P = 0.022) as well as the need for revision surgery (P=0.021) in both groups, suggesting that surgical technique may be the most important factor when addressing injuries. Our data support this, indicating that surgeon familiarity should be the deciding factor in the absence of observed implant outcome differences. Limitations do exist in this study. Publication bias may have been introduced by using English-only, full-text articles. Selection bias may exist as some studies may have been unintentionally omitted during article collection. Heterogeneity in data reporting, technique, indications, and follow-up inevitably skews statistical calculations. Specifically, as several implant designs limit variability in fixation technique, polarity, and component material, these variables may inherently confound one another. # **CONCLUSIONS** In conclusion, our meta-analysis did not demonstrate significant differences in functional outcomes, complication rates, and revision rates between monopolar and bipolar radial head arthroplasty irrespective of indication. A multicenter prospective control trial is needed to conclude if there are true differences between these implant types. # **NOTES** ### **ORCID** Kofi Agyeman https://orcid.org/0000-0003-1943-8822 Arya Minaie https://orcid.org/0000-0002-7925-2790 Seth D. Dodds https://orcid.org/0000-0003-2206-6003 ### **Author contributions** Conceptualization: SDD. Data curation: KA, AM. Investigation: KA, SDD. Methodology: KA, AM, SDD. Supervision: SDD. Validation: SDD. Writing – original draft: KA. Writing – review & editing: AM, SDD. ### **Conflict of interest** None. # **Funding** None. # Data availability None. # Acknowledgments None. ## REFERENCES - Antoni M, Kempf JF, Clavert P. Comparison of bipolar and monopolar radial head prostheses in elbow fracture-dislocation. Orthop Traumatol Surg Res 2020;106:311–7. - Acevedo DC, Paxton ES, Kukelyansky I, Abboud J, Ramsey M. Radial head arthroplasty: state of the art. J Am Acad Orthop Surg 2014;22:633–42. - 3. Heijink A, Kodde IF, Mulder PG, et al. Radial head arthroplasty: a systematic review. JBJS Rev 2016;4:e3. - 4. Pomianowski S, Morrey BF, Neale PG, Park MJ, O'Driscoll SW, An KN. Contribution of monoblock and bipolar radial head prostheses to valgus stability of the elbow. J Bone Joint Surg Am 2001;83:1829–34. - Rotini R, Marinelli A, Guerra E, Bettelli G, Cavaciocchi M. Radial head replacement with unipolar and bipolar SBi system: a clinical and radiographic analysis after a 2-year mean follow-up. Musculoskelet Surg 2012;96 Suppl 1:S69–79. - Moon JG, Berglund LJ, Zachary D, An KN, O'Driscoll SW. Radiocapitellar joint stability with bipolar versus monopolar radial head prostheses. J Shoulder Elbow Surg 2009;18:779–84. - Judet T, Garreau de Loubresse C, Piriou P, Charnley G. A floating prosthesis for radial-head fractures. J Bone Joint Surg Br 1996;78:244–9. - **8.** Brinkman JM, Rahusen FT, de Vos MJ, Eygendaal D. Treatment of sequelae of radial head fractures with a bipolar radial head - prosthesis: good outcome after 1-4 years follow-up in 11 patients. Acta Orthop 2005;76:867–72. - Rovesta C, Minervini C, Bonanno G, Celli L. The radial head prosthesis: historical perspective. In: Celli A, Celli L, Morrey BF, eds. Treatment of elbow lesions. Springer Milan; 2008. p. 137– 43 - 10. Zunkiewicz MR, Clemente JS, Miller MC, Baratz ME, Wysocki RW, Cohen MS. Radial head replacement with a bipolar system: a minimum 2-year follow-up. J Shoulder Elbow Surg 2012;21:98– 104. - 11. Moro JK, Werier J, MacDermid JC, Patterson SD, King GJ. Arthroplasty with a metal radial head for unreconstructible fractures of the radial head. JBJS 2001;83:1201. - 12. Chapman CB, Su BW, Sinicropi SM, Bruno R, Strauch RJ, Rosenwasser MP. Vitallium radial head prosthesis for acute and chronic elbow fractures and fracture-dislocations involving the radial head. J Shoulder Elbow Surg 2006;15:463–73. - 13. Lim YJ, Chan BK. Short-term to medium-term outcomes of cemented Vitallium radial head prostheses after early excision for radial head fractures. J Shoulder Elbow Surg 2008;17:307–12. - 14. Heijink A, Morrey BF, van Riet RP, O'Driscoll SW, Cooney WP. Delayed treatment of elbow pain and dysfunction following Essex-Lopresti injury with metallic radial head replacement: a case series. J Shoulder Elbow Surg 2010;19:929–36. - **15.** Katthagen JC, Jensen G, Lill H, Voigt C. Monobloc radial head prostheses in complex elbow injuries: results after primary and secondary implantation. Int Orthop 2013;37:631–9. - 16. Sarris IK, Kyrkos MJ, Galanis NN, Papavasiliou KA, Sayegh FE, Kapetanos GA. Radial head replacement with the MoPyC pyrocarbon prosthesis. J Shoulder Elbow Surg 2012;21:1222–8. - 17. El Sallakh S. Radial head replacement for radial head fractures. J Orthop Trauma 2013;27:e137–40. - 18. Ricón FJ, Sánchez P, Lajara F, Galán A, Lozano JA, Guerado E. Result of a pyrocarbon prosthesis after comminuted and unreconstructable radial head fractures. J Shoulder Elbow Surg 2012;21:82–91. - 19. Berschback JC, Lynch TS, Kalainov DM, Wysocki RW, Merk BR, Cohen MS. Clinical and radiographic comparisons of two different radial head implant designs. J Shoulder Elbow Surg 2013;22:1108–20. - **20.** Mou Z, Chen M, Xiong Y, Fan Z, Wang A, Wang Z. Comminuted radial head fractures treated by the Acumed anatomic radial head system. Int J Clin Exp Med 2015;8:6327–33. - **21.** Levy JC, Formaini NT, Kurowicki J. Outcomes and radiographic findings of anatomic press-fit radial head arthroplasty. J Shoulder Elbow Surg 2016;25:802–9. - 22. Gauci MO, Winter M, Dumontier C, Bronsard N, Allieu Y. - Clinical and radiologic outcomes of pyrocarbon radial head prosthesis: midterm results. J Shoulder Elbow Surg 2016;25:98–104. - 23. Ashwood N, Bain GI, Unni R. Management of Mason type-III radial head fractures with a titanium prosthesis, ligament repair, and early mobilization. J Bone Joint Surg Am 2004;86:274–80. - 24. Wretenberg P, Ericson A, Stark A. Radial head prosthesis after fracture of radial head with associated elbow instability. Arch Orthop Trauma Surg 2006;126:145–9. - 25. Doornberg JN, Parisien R, van Duijn PJ, Ring D. Radial head arthroplasty with a modular metal spacer to treat acute traumatic elbow instability. J Bone Joint Surg Am 2007;89:1075–80. - 26. Chien HY, Chen AC, Huang JW, Cheng CY, Hsu KY. Short- to medium-term outcomes of radial head replacement arthroplasty in posttraumatic unstable elbows: 20 to 70 months follow-up. Chang Gung Med J 2010;33:668–78. - 27. Muhm M, de Castro R, Winkler H. Radial head arthroplasty with an uncemented modular metallic radial head prosthesis: short-and mid-term results. Eur J Trauma Emerg Surg 2011;37:85–95. - 28. Chen X, Wang SC, Cao LH, Yang GQ, Li M, Su JC. Comparison between radial head replacement and open reduction and internal fixation in clinical treatment of unstable, multi-fragmented radial head fractures. Int Orthop 2011;35:1071–6. - 29. Watters TS, Garrigues GE, Ring D, Ruch DS. Fixation versus replacement of radial head in terrible triad: is there a difference in elbow stability and prognosis. Clin Orthop Relat Res 2014;472: 2128–35. - **30.** Moghaddam A, Raven TF, Dremel E, Studier-Fischer S, Grutzner PA, Biglari B. Outcome of radial head arthroplasty in comminuted radial head fractures: short and midterm results. Trauma Mon 2016;21:e20201. - **31.** Yan M, Ni J, Song D, Ding M, Liu T, Huang J. Radial head replacement or repair for the terrible triad of the elbow: which procedure is better. ANZ J Surg 2015;85:644–8. - **32.** Marsh JP, Grewal R, Faber KJ, Drosdowech DS, Athwal GS, King GJ. Radial head fractures treated with modular metallic radial head replacement: outcomes at a mean follow-up of eight years. J Bone Joint Surg Am 2016;98:527–35. - 33. Dotzis A, Cochu G, Mabit C, Charissoux JL, Arnaud JP. Com- - minuted fractures of the radial head treated by the Judet floating radial head prosthesis. J Bone Joint Surg Br 2006;88:760–4. - 34. Popovic N, Lemaire R, Georis P, Gillet P. Midterm results with a bipolar radial head prosthesis: radiographic evidence of loosening at the bone-cement interface. J Bone Joint Surg Am 2007;89: 2469–76. - 35. Burkhart KJ, Mattyasovszky SG, Runkel M, et al. Mid- to longterm results after bipolar radial head arthroplasty. J Shoulder Elbow Surg 2010;19:965–72. - 36. Celli A, Modena F, Celli L. The acute bipolar radial head replacement for isolated unreconstructable fractures of the radial head. Musculoskelet Surg 2010;94 Suppl 1:S3–9. - 37. Allavena C, Delclaux S, Bonnevialle N, Rongières M, Bonnevialle P, Mansat P. Outcomes of bipolar radial head prosthesis to treat complex radial head fractures in 22 patients with a mean follow-up of 50 months. Orthop Traumatol Surg Res 2014;100: 703–9. - 38. Kodde IF, Heijink A, Kaas L, Mulder PG, van Dijk CN, Eygendaal D. Press-fit bipolar radial head arthroplasty, midterm results. J Shoulder Elbow Surg 2016;25:1235–42. - 39. Viveen J, Kodde IF, Koenraadt KL, Beumer A, The B, Eygendaal D. Clinical and radiographic outcome of revision surgery of radial head prostheses: midterm results in 16 patients. J Shoulder Elbow Surg 2017;26:394–402. - 40. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O'Driscoll SW. Effect of hoop stress fracture on micromotion of textured ingrowth stems for radial head replacement. J Shoulder Elbow Surg 2012;21:949–54. - 41. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O'Driscoll SW. The biomechanical effect of prosthetic design on radiocapitellar stability in a terrible triad model. J Orthop Trauma 2012;26:539–44. - **42.** Chanlalit C, Shukla DR, Fitzsimmons JS, Thoreson AR, An KN, O'Driscoll SW. Radiocapitellar stability: the effect of soft tissue integrity on bipolar versus monopolar radial head prostheses. J Shoulder Elbow Surg 2011;20:219–25. - **43.** Sershon RA, Luchetti TJ, Cohen MS, Wysocki RW. Radial head replacement with a bipolar system: an average 10-year follow-up. J Shoulder Elbow Surg 2018;27:e38–44.