Acknowledgement
This work was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002). This research was also supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255). This research was also supported in part by the Technology Innovation Program (20016850, Development of surface blackening technology for high corrosion resistance galvanized alloy coating; 20015158, Development of processing and fastening technology to minimize damage to the plating layer of highly corrosion-resistant, highly-formed plated steel materials for plant farms) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
References
- O. Bouaziz, H. Zurob, and M. Huang, Driving Force and Logic of Development of Advanced High Strengh Steels for Automotive Applications, Steel Research International, 84, 937 (2013). Doi: https://doi.org/10.1002/srin.201200288
- T. Michler and J. Naumann, Microstructural aspects upon hydrogen environment embrittlement of various bcc steels, International Journal of Hydrogen Energy, 35, 821 (2010). Doi: https://doi.org/10.1016/j.ijhydene.2009.10.092
- E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570
- J. Venezuela, Q. Zhou, Q. Liu, H. Li, M. Zhang, M. S Dargusch, A. Atrens, The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels, Materialstoday Communications, 1, 17 (2018). Doi: https://doi.org/10.1016/j.mtcomm.2018.07.011
- J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, A review of hydrogen embrittlement of martensitic advanced high-strength steels, Corrosion Reviews, 153, 34 (2016). Doi: https://doi.org/10.1515/corrrev-2016-0006
- M. M. Islam, C. Zou, A. C. T. V. Duin, and S. Raman, Interaction of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics, 18, 761 (2015). Doi: https://doi.org/10.1039/c5cp06108c
- N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, and G. Stergioudis, Microstructure of zinc hot-dip galvanized coatings used for corrosion protection, Meterials Letters, 60, 786 (2006). Doi: https://doi.org/10.1016/j.matlet.2005.10.013
- D. H. Coleman, G. Zheng, B. N. Popov, and R. E. White, The Effects of Multiple Electroplated Zinc Layers on the Inhibition of Hydrogen Permeation Through an Iron Membrane, Journal of The Electrochemical Society, 143, 1871 (1996). Doi: https://doi.org/10.1149/1.1836917
- S. J. Kim, Electrochemical Hydrogen Permeation Behaviors of Pre-Strained Fe-Mn-C TWIP Steel With or Without Zn Coating, Corrosion science and technology, 22, 297 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.297
- C. W. Lee, D. W. Fan, I. R. Sohn, S. J. LEE, and B. C. De Cooman, Liquid- Metal-Induced Embrittlement of Zn-Coated Hot stamping Steel, Metallurgical and Materials Transactions A, 43, 5122 (2012). Doi: https://doi.org/10.1007/s11661-012-1316-0
- J. O'M. Bockris, J. McBreen, and L. Nanis, The Hydrogen Evolution Kinetics and Hydrogen Entry into a?Iron, Journal of The Electrochemical Society, 112, 1025 (1965). Doi: https://doi.org/10.1149/1.2423335
- H. R. Bang, J. S. Park, and S. J. Kim, Effects of Ni-flash coating on hydrogen evolution, ad/absorption, and permeation behaviors of advanced high-strength steel during electro-Zn plating, Journal of Electroanalytical Chemistry, 994, 117653 (2023). Doi: https://doi.org/10.1016/j.jelechem.2023.117653
- Y. He, Y. Li, C. Chen, and H. Yu, Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations, International Journal of Hydrogen Energy, 42, 27438 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2017.08.212
- H. R. Bang, S. H. Kim, and S. J. Kim, Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing, Corrosion science and technology, 22, 341 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.341
- U. Bansal, A. K. Thakur, V. A, Baheti, S. B. Singh, A. Mondal, A. K. Halder, K. Chattopadhyay, A. Paul, and A. Chakraborty, Diffusion-controlled growth mechanism of phases and the microstructural evolution in the Ni-Zn system, Materials Characterization, 202, 112982 (2023). Doi: https://doi.org/10.1016/j.matchar.2023.112982
- A. Chakraborty, R. Ghosh, M. Sudan, A. Mondal, Improvement in hot dip galvanized coating microstructure and properties by pre-metallic deposition on steel surface: A comprehensive review, Surface and Coatings Technology, 449, 128972 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128972
- J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of Tempering Condition on Hydrogen Behavior of Martensitic High-Strength Steel, Corrosion science and technology, 17, 242 (2018). Doi: https://doi.org/10.14773/cst.2018.17.5.242
- E. Wimmer, W. Wolf, J. Sticht, and P. Saxe, Temperature-dependent diffusion coefficients from ab initio computations: Hydrogen, deuterium, and tritium in nickel, Physical Review B, 77, 134305 (2008). Doi: https://doi.org/10.1103/PhysRevB.77.134305
- J. Li, A. Oudriss, A. Metsue, J. Bouhattate, and X. Feaugas, Anisotropy of hydrogen diffusion in nickel single crystals: the effects of self-stress and hydrogen concentration on diffusion, Scientific Reports, 7, 45041 (2017). Doi: https://doi.org/10.1038/srep45041
- H. R. Bang, S. H. Kim, and S. J. Kim, Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing, Corrosion science and technology, 22, 341 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.341
- H. R. Bang, J. S. Park, S. H. Kim, T. Y. Kim, M. S. Oh, and S. J. Kim, Effects of applied cathodic current on hydrogen infusion, embrittlement, and corrosion-induced hydrogen embrittlement behaviors of ultra-high strength steel for automotive applications, Korean Journal of Metals and Materials, 61, 145 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.3.145
- N. Mattielli, J. C. J. Petit, K. Deboudt, P. Flament, E. Perdrix, A. Taillez, J. Rimetz-Planchon, and D. Weis, Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery, Atmospheric Environment, 43, 1265 (2009). Doi: https://doi.org/10.1016/j.atmosenv.2008.11.030
- H. Bai, L. Kang, P. Zhang, J. Bai, J. Liu, B. Cao, and Y. Xu, TiC-Fe gradient coating with high hardness and interfacial adhesion strength on cast iron prepared by in-situ solid-phase diffusion method, Vacuum, 215, 112336 (2023). Doi: https://doi.org/10.1016/j.vacuum.2023.112336
- E. Song, G. H. Lee, H. Jeon, B. J. Park, J. G. Lee, and J. Y. Kim, Stretch-flangeability correlated with hardness distribution and strain-hardenability of constituent phases in dual- and complex-phase steels, Materials Science and Engineering: A, 817, 141353 (2021). Doi: https://doi.org/10.1016/j.msea.2021.141353