DOI QR코드

DOI QR Code

Effect of Ni-Flash Coating on Hydrogen Embrittlement and Liquid Metal Embrittlement of Ultra-High-Strength Electrogalvanized Steel Sheet

Ni-Flash 코팅이 초고강도 전기아연 도금강재의 수소취화 및 액상금속취화에 미치는 영향

  • Seon Ho Oh (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Jin Sung Park (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Sung Jin Kim (Department of Advanced Materials Science and Engineering, Sunchon National University)
  • 오선호 (순천대학교 첨단신소재공학과) ;
  • 박진성 (순천대학교 첨단신소재공학과) ;
  • 김성진 (순천대학교 첨단신소재공학과)
  • Received : 2024.06.27
  • Accepted : 2024.07.18
  • Published : 2024.08.30

Abstract

The purpose of this study was to elucidate effects of a thin (tens to hundreds of nanometers) Ni-flash coating layer on hydrogen embrittlement (HE) and liquid metal embrittlement (LME) in ultra-high-strength electrogalvanized steel with a tensile strength of more than 1 GPa. Various experimental and analytical methods, including thermal desorption spectroscopy, slow strain rate testing, resistance spot welding, X-ray diffraction, and metallographic observation, were employed. Results showed that an increase in Ni target amount for flash coating resulted in a decrease in diffusible hydrogen content during electrogalvanizing, resulting in a significant decrease in HE sensitivity. Moreover, a Ni target amount of more than 1000 mg/m2 drastically reduced the occurring frequency and average depth of LME. This reduction could be primarily attributed to formation of Zn-Ni intermetallic phases during the welding process that could inhibit liquefaction of intermetallic phases in the heat-affected zone. This study provides a desirable Ni target amount for Ni-flash coating on ultra-high-strength steels conducted in a continuous galvanizing line or a high-speed batch line to achieve high resistance to both HE and LME.

Keywords

Acknowledgement

This work was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002). This research was also supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255). This research was also supported in part by the Technology Innovation Program (20016850, Development of surface blackening technology for high corrosion resistance galvanized alloy coating; 20015158, Development of processing and fastening technology to minimize damage to the plating layer of highly corrosion-resistant, highly-formed plated steel materials for plant farms) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. O. Bouaziz, H. Zurob, and M. Huang, Driving Force and Logic of Development of Advanced High Strengh Steels for Automotive Applications, Steel Research International, 84, 937 (2013). Doi: https://doi.org/10.1002/srin.201200288
  2. T. Michler and J. Naumann, Microstructural aspects upon hydrogen environment embrittlement of various bcc steels, International Journal of Hydrogen Energy, 35, 821 (2010). Doi: https://doi.org/10.1016/j.ijhydene.2009.10.092
  3. E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570
  4. J. Venezuela, Q. Zhou, Q. Liu, H. Li, M. Zhang, M. S Dargusch, A. Atrens, The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels, Materialstoday Communications, 1, 17 (2018). Doi: https://doi.org/10.1016/j.mtcomm.2018.07.011
  5. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, A review of hydrogen embrittlement of martensitic advanced high-strength steels, Corrosion Reviews, 153, 34 (2016). Doi: https://doi.org/10.1515/corrrev-2016-0006
  6. M. M. Islam, C. Zou, A. C. T. V. Duin, and S. Raman, Interaction of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics, 18, 761 (2015). Doi: https://doi.org/10.1039/c5cp06108c
  7. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, and G. Stergioudis, Microstructure of zinc hot-dip galvanized coatings used for corrosion protection, Meterials Letters, 60, 786 (2006). Doi: https://doi.org/10.1016/j.matlet.2005.10.013
  8. D. H. Coleman, G. Zheng, B. N. Popov, and R. E. White, The Effects of Multiple Electroplated Zinc Layers on the Inhibition of Hydrogen Permeation Through an Iron Membrane, Journal of The Electrochemical Society, 143, 1871 (1996). Doi: https://doi.org/10.1149/1.1836917
  9. S. J. Kim, Electrochemical Hydrogen Permeation Behaviors of Pre-Strained Fe-Mn-C TWIP Steel With or Without Zn Coating, Corrosion science and technology, 22, 297 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.297
  10. C. W. Lee, D. W. Fan, I. R. Sohn, S. J. LEE, and B. C. De Cooman, Liquid- Metal-Induced Embrittlement of Zn-Coated Hot stamping Steel, Metallurgical and Materials Transactions A, 43, 5122 (2012). Doi: https://doi.org/10.1007/s11661-012-1316-0
  11. J. O'M. Bockris, J. McBreen, and L. Nanis, The Hydrogen Evolution Kinetics and Hydrogen Entry into a?Iron, Journal of The Electrochemical Society, 112, 1025 (1965). Doi: https://doi.org/10.1149/1.2423335
  12. H. R. Bang, J. S. Park, and S. J. Kim, Effects of Ni-flash coating on hydrogen evolution, ad/absorption, and permeation behaviors of advanced high-strength steel during electro-Zn plating, Journal of Electroanalytical Chemistry, 994, 117653 (2023). Doi: https://doi.org/10.1016/j.jelechem.2023.117653
  13. Y. He, Y. Li, C. Chen, and H. Yu, Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations, International Journal of Hydrogen Energy, 42, 27438 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2017.08.212
  14. H. R. Bang, S. H. Kim, and S. J. Kim, Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing, Corrosion science and technology, 22, 341 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.341
  15. U. Bansal, A. K. Thakur, V. A, Baheti, S. B. Singh, A. Mondal, A. K. Halder, K. Chattopadhyay, A. Paul, and A. Chakraborty, Diffusion-controlled growth mechanism of phases and the microstructural evolution in the Ni-Zn system, Materials Characterization, 202, 112982 (2023). Doi: https://doi.org/10.1016/j.matchar.2023.112982
  16. A. Chakraborty, R. Ghosh, M. Sudan, A. Mondal, Improvement in hot dip galvanized coating microstructure and properties by pre-metallic deposition on steel surface: A comprehensive review, Surface and Coatings Technology, 449, 128972 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128972
  17. J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of Tempering Condition on Hydrogen Behavior of Martensitic High-Strength Steel, Corrosion science and technology, 17, 242 (2018). Doi: https://doi.org/10.14773/cst.2018.17.5.242
  18. E. Wimmer, W. Wolf, J. Sticht, and P. Saxe, Temperature-dependent diffusion coefficients from ab initio computations: Hydrogen, deuterium, and tritium in nickel, Physical Review B, 77, 134305 (2008). Doi: https://doi.org/10.1103/PhysRevB.77.134305
  19. J. Li, A. Oudriss, A. Metsue, J. Bouhattate, and X. Feaugas, Anisotropy of hydrogen diffusion in nickel single crystals: the effects of self-stress and hydrogen concentration on diffusion, Scientific Reports, 7, 45041 (2017). Doi: https://doi.org/10.1038/srep45041
  20. H. R. Bang, S. H. Kim, and S. J. Kim, Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing, Corrosion science and technology, 22, 341 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.341
  21. H. R. Bang, J. S. Park, S. H. Kim, T. Y. Kim, M. S. Oh, and S. J. Kim, Effects of applied cathodic current on hydrogen infusion, embrittlement, and corrosion-induced hydrogen embrittlement behaviors of ultra-high strength steel for automotive applications, Korean Journal of Metals and Materials, 61, 145 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.3.145
  22. N. Mattielli, J. C. J. Petit, K. Deboudt, P. Flament, E. Perdrix, A. Taillez, J. Rimetz-Planchon, and D. Weis, Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery, Atmospheric Environment, 43, 1265 (2009). Doi: https://doi.org/10.1016/j.atmosenv.2008.11.030
  23. H. Bai, L. Kang, P. Zhang, J. Bai, J. Liu, B. Cao, and Y. Xu, TiC-Fe gradient coating with high hardness and interfacial adhesion strength on cast iron prepared by in-situ solid-phase diffusion method, Vacuum, 215, 112336 (2023). Doi: https://doi.org/10.1016/j.vacuum.2023.112336
  24. E. Song, G. H. Lee, H. Jeon, B. J. Park, J. G. Lee, and J. Y. Kim, Stretch-flangeability correlated with hardness distribution and strain-hardenability of constituent phases in dual- and complex-phase steels, Materials Science and Engineering: A, 817, 141353 (2021). Doi: https://doi.org/10.1016/j.msea.2021.141353